Σπιν 1/2

Γενικά
Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή \(\hat{J} \) με συνιστώσες \(\hat{J}_x, \hat{J}_y, \hat{J}_z \), που ικανοποιούν της άλγεβρα της στροφορμής, για να εξετάσουμε την περίπτωση \(j = \frac{1}{2} \). Αυτή είναι η περίπτωση του σπιν \(\frac{1}{2} \).

Υποθέσουμε ότι τα \(\varepsilon_1 \) κομάρκ και τα \(\varepsilon_2 \) λεπτά του Καθιερωμένου Προτύπου, δηλαδή όλα τα στοιχεία σωμάτων, έχουν σπιν \(\frac{1}{2} \). Αυτό σημαίνει ότι οι δομικές μονάδες της ύλης έχουν σπιν \(\frac{1}{2} \).

Οι εξισώσεις ιδιοτιμών των τελεστών \(\hat{S}^2 \) και \(\hat{S}_z \) γράφονται

\[
\hat{S}^2 \left| s, m_\tau \right> = s(s+1)\hbar^2 \left| s, m_\tau \right> \tag{1}
\]
\[
\hat{S}_z \left| s, m_\tau \right> = m_\tau \hbar \left| s, m_\tau \right> \tag{2}
\]

Εφόσον \(s = \frac{1}{2}, m_\tau = \frac{1}{2}, -\frac{1}{2} \). Επομένως, οι κοινές ιδιοκαταστάσεις των τελεστών \(\hat{S}^2 \) και \(\hat{S}_z \) είναι οι δύο ιδιοκαταστάσεις \(\left| \frac{1}{2}, \frac{1}{2} \right>, \left| \frac{1}{2}, -\frac{1}{2} \right> \). Οι δύο αυτές ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν \(\frac{1}{2} \).

Συνήθως, η ιδιοκατάσταση \(\left| \frac{1}{2}, \frac{1}{2} \right> \), δηλαδή η ιδιοκατάσταση με ιδιωμή του \(\hat{S}_z \frac{\hbar}{2} \), αναφέρεται ως σπιν-πάνω και συμβολίζεται με \(\uparrow \) ή \(+ \), ενώ η ιδιοκατάσταση \(\left| \frac{1}{2}, -\frac{1}{2} \right> \), δηλαδή η ιδιοκατάσταση με ιδιωμή του \(\hat{S}_z -\frac{\hbar}{2} \), αναφέρεται ως σπιν-κάτω και συμβολίζεται με \(\downarrow \) ή \(- \).

1. Πίνακες του σπιν 1/2 – Πίνακες του Pauli
Θα κατασκευάσουμε τους πίνακες \(S_x, S_y, S_z \), και \(S^2 \) που αναπαριστούν τους αντίστοιχους τελεστές \(\hat{S}_x, \hat{S}_y, \hat{S}_z \), και \(\hat{S}^2 \) στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}^2 \) και \(\hat{S}_z \), δηλαδή στη βάση \(\left| \frac{1}{2}, \frac{1}{2} \right>, \left| \frac{1}{2}, -\frac{1}{2} \right> \).

Θα χρησιμοποιήσουμε τις γενικές σχέσεις.
\[\hat{J}_x | j, m \rangle = \frac{\hbar}{2} \left(\sqrt{j(j+1) - m(m-1)} | j, m - 1 \rangle + \sqrt{j(j+1) - m(m+1)} | j, m + 1 \rangle \right) \]
\[\hat{J}_y | j, m \rangle = \frac{i\hbar}{2} \left(\sqrt{j(j+1) - m(m-1)} | j, m - 1 \rangle - \sqrt{j(j+1) - m(m+1)} | j, m + 1 \rangle \right) \]

που αποδείξαμε στην άσκηση 2 της προηγουμένης ανάρτησης («Λυμένες ασκήσεις στροφομής (I)»), οι οποίες ισχύουν για κάθε γενική στροφομή.

Για την περίπτωση όπου \(j = \frac{1}{2} \), οι σχέσεις αυτές γράφονται

\[
\hat{S}_x \left| \frac{1}{2}, m \right\rangle = \frac{\hbar}{2} \left(\frac{3}{4} - m \left(m - 1 \right) \right) \left| \frac{1}{2}, m - 1 \right\rangle + \frac{3}{4} m \left(m + 1 \right) \left| \frac{1}{2}, m + 1 \right\rangle
\]
\[\hat{S}_y \left| \frac{1}{2}, m \right\rangle = \frac{i\hbar}{2} \left(\frac{3}{4} - m \left(m - 1 \right) \right) \left| \frac{1}{2}, m - 1 \right\rangle - \frac{3}{4} m \left(m + 1 \right) \left| \frac{1}{2}, m + 1 \right\rangle
\]

Για \(m = \frac{1}{2} \) και \(-\frac{1}{2} \), η (1) μάς δίνει

\[
\hat{S}_x \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{\hbar}{2} \left(\frac{3}{4} - \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \left| \frac{1}{2}, \frac{1}{2} \right\rangle + \frac{3}{4} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{\hbar}{2} \left| \frac{1}{2}, \frac{1}{2} \right\rangle
\]

Δηλαδή

\[\hat{S}_x \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle = \frac{\hbar}{2} \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle \] (3)

Και

\[
\hat{S}_x \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle = \frac{\hbar}{2} \left(\frac{3}{4} - \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle + \frac{3}{4} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle = \frac{\hbar}{2} \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle
\]

Δηλαδή

\[\hat{S}_x \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle = \frac{\hbar}{2} \left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle \] (4)

Έτσι, αν η ιδιοκατάσταση \(\left| \frac{1}{2}, \frac{1}{2} \right\rangle \) (σπιν-πάνω) είναι το πρώτο διάνυσμα βάσης και η ιδιοκατάσταση \(\left| \frac{1}{2}, \left(-\frac{1}{2} \right) \right\rangle \) (σπιν-κάτω) είναι το δεύτερο διάνυσμα βάσης, τα στοιχεία του πίνακα \(S_\sigma \) είναι, σύμφωνα και με τις (3) και (4),

\[
(S_\sigma)_{ij} = \left< \frac{1}{2}, \frac{1}{2} | \hat{S}_\sigma | \frac{1}{2}, \frac{1}{2} \right> = \frac{\hbar}{2} \left< \frac{1}{2}, \frac{1}{2} | \frac{1}{2}, \frac{1}{2} \right> = 0
\]
\[
(S_x)_{12} = \frac{1}{2} \left(\frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} \right) = \frac{h}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} = \frac{h}{2}
\]

\[
(S_x)_{21} = \frac{1}{2} \left(\frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} \right) = \frac{h}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} = \frac{h}{2}
\]

\[
(S_x)_{22} = \frac{1}{2} \left(\frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} \right) = \frac{h}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} = 0
\]

Επομένως, ο πίνακας \(S_x \) που αναπαριστά τον τελεστή \(\hat{S}_x \), δηλαδή τη \(x \)-συνιστώσα του τελεστή του σπιν \(\hat{S} \), στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}^2 \) και \(\hat{S}_z \), είναι

\[
S_x = \begin{pmatrix} 0 & h/2 \\ h/2 & 0 \end{pmatrix} = \frac{h}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

Δηλαδή

\[
S_x = \frac{h}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{5}
\]

Με τον ίδιο τρόπο, κατασκευάζουμε τον πίνακα \(S_y \).

Για \(m_y = 1/2 \), \(m_y = -1/2 \), η (2) μάς δίνει

\[
\hat{S}_y \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} = \frac{ih}{2} \left(\frac{3}{4} \begin{bmatrix} -1 & 1 \\ -1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} - \frac{3}{4} \begin{bmatrix} -1 & 1 \\ -1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} \right) = \frac{ih}{2} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & -1/2 \end{bmatrix}
\]

Δηλαδή

\[
\hat{S}_y \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} = \frac{ih}{2} \begin{bmatrix} 1/2 & -1/2 \end{bmatrix} \tag{6}
\]

Και

\[
\hat{S}_y \begin{bmatrix} 1/2 & -1/2 \end{bmatrix} = \frac{ih}{2} \left(\frac{3}{4} \begin{bmatrix} -1 & 1 \\ -1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} - \frac{3}{4} \begin{bmatrix} -1 & 1 \\ -1 & 1 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ \end{bmatrix} \right) = \frac{ih}{2} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}
\]

Δηλαδή
Επομένως, τα στοιχεία του πίνακα S_y είναι, σύμφωνα και με τις (6) και (7),

$$(S_y)_{11} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} = \frac{i\hbar}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$$

$$(S_y)_{12} = \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} = -\frac{i\hbar}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$$

$$(S_y)_{21} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \frac{i\hbar}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$$

$$(S_y)_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = -\frac{i\hbar}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 0$$

Επομένως, ο πίνακας S_y που αναπαριστά τον τελεστή \hat{S}_y, δηλαδή την y-συνιστώσα του τελεστή του σπιν \hat{S}, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \hat{S}^2 και \hat{S}_z, είναι

$$S_y = \begin{pmatrix} 0 & -\frac{i\hbar}{2} \\ -\frac{i\hbar}{2} & 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Δηλαδή

$$S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$ (8)

Στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \hat{S}^2 και \hat{S}_z, ο πίνακας S_z πρέπει να είναι διαγώνιος, με στοιχεία τις ιδιοτιμές του τελεστή \hat{S}_z, δηλαδή $\pm \frac{\hbar}{2}$.

Πράγματι, από την εξίσωση ιδιοτιμών του τελεστή \hat{S}_z έχουμε

$$\hat{S}_z \begin{pmatrix} 1/2, m_z \end{pmatrix} = m_z \hbar \begin{pmatrix} 1/2, m_z \end{pmatrix}$$

Επομένως

$$\hat{S}_z \begin{pmatrix} 1/2, 1/2 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$ (9)

$$\hat{S}_z \begin{pmatrix} 1/2, -1/2 \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$ (10)

Αρα, τα στοιχεία του πίνακα S_z είναι, σύμφωνα και με τις (9) και (10),
(\(S_z\))_{11} = \left\langle \frac{1}{2}, \frac{1}{2} \mid \hat{S}_z \mid \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{\hbar}{2} \left\langle \frac{1}{2}, \frac{1}{2} \mid \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{\hbar}{2}

(\(S_z\))_{12} = \left\langle \frac{1}{2}, \frac{1}{2} \mid \hat{S}_z \mid \frac{1}{2}, \frac{1}{2} \right\rangle = -\frac{\hbar}{2} \left\langle \frac{1}{2}, \frac{1}{2} \mid \frac{1}{2}, \frac{1}{2} \right\rangle = 0

(\(S_z\))_{21} = \left\langle \frac{1}{2}, \frac{1}{2} \mid \hat{S}_z \mid \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{\hbar}{2} \left\langle \frac{1}{2}, \frac{1}{2} \mid \frac{1}{2}, \frac{1}{2} \right\rangle = 0

(\(S_z\))_{22} = \left\langle \frac{1}{2}, \frac{1}{2} \mid \hat{S}_z \mid \frac{1}{2}, \frac{1}{2} \right\rangle = -\frac{\hbar}{2} \left\langle \frac{1}{2}, \frac{1}{2} \mid \frac{1}{2}, \frac{1}{2} \right\rangle = -\frac{\hbar}{2}

Επομένως, ο πίνακας \(S_z\) που αναπαριστά τον τελεστή \(\hat{S}_z\), δηλαδή τη \(z\)-συνιστώσα του τελεστή του σπιν \(\hat{S}\), στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_x\) και \(\hat{S}_y\), είναι

\[
S_z = \begin{pmatrix}
\frac{\hbar}{2} & 0 \\
0 & -\frac{\hbar}{2}
\end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\
0 & -1
\end{pmatrix}
\]

Δηλαδή

\[
S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\
0 & -1
\end{pmatrix} \tag{11}
\]

Οι (5), (8), και (11) μάς δίνουν τους πίνακες που αναπαριστούν τους τελεστές \(\hat{S}_x, \hat{S}_y, \hat{S}_z\), δηλαδή τις τρεις συνιστώσες του σπιν \(\frac{1}{2}\), στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_x\) και \(\hat{S}_y\). Παρατηρήστε ότι και οι τρεις πίνακες είναι ερμιτιανοί, όπως πρέπει, αφού αναπαριστούν ερμιτιανούς τελεστές. Οι συνιστώσες του σπιν είναι πραγματικές, επομένως οι αντίστοιχοι τελεστές \(\hat{S}_x, \hat{S}_y, \hat{S}_z\) είναι ερμιτιανοί. Παρατηρήστε επίσης ότι τα στοιχεία του πίνακα \(S_x\) είναι πραγματικά, ενώ τον \(S_y\) είναι φανταστικά (το μηδέν ανήκει και στους πραγματικούς και στους φανταστικούς αριθμούς, επομένως μπορούμε να το θεωρήσουμε και πραγματικό και φανταστικό αριθμό).

Μπορούμε να γράψουμε τις (5), (8), και (11) ως

\[
S_x = \frac{\hbar}{2} \sigma_x \tag{12}
\]

\[
S_y = \frac{\hbar}{2} \sigma_y \tag{13}
\]

\[
S_z = \frac{\hbar}{2} \sigma_z \tag{14}
\]

όπου
\[\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

Οι πίνακες \(\sigma_x, \sigma_y, \sigma_z \) είναι οι πίνακες του Pauli, και όπως βλέπουμε, είναι ερμιτιανοί. Ο πίνακας \(S^2 \), που αναπαριστά τον τελεστή \(\hat{S}^2 \) κατασκευάζεται εύκολα από την εξίσωση ιδιοτιμών του \(\hat{S}^2 \), δηλαδή από την εξίσωση \(\hat{S}^2 \left| \frac{1}{2}, m_z \right\rangle = \frac{3\hbar^2}{4} \left| \frac{1}{2}, m_z \right\rangle \), η οποία για \(m_z = \frac{1}{2} \) και \(-\frac{1}{2} \), μάς δίνει, αντίστοιχα,

\[\hat{S}^2 \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{3\hbar^2}{4} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \quad (15) \]

\[\hat{S}^2 \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{3\hbar^2}{4} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \quad (16) \]

Επομένως

\[(\hat{S}^2)_{11} = \left\langle \frac{1}{2}, \frac{1}{2} \right| \hat{S}^2 \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{3\hbar^2}{4} \]

\[(\hat{S}^2)_{12} = \left\langle \frac{1}{2}, \frac{1}{2} \right| \hat{S}^2 \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = 0 \]

\[(\hat{S}^2)_{21} = \left\langle \frac{1}{2}, -\frac{1}{2} \right| \hat{S}^2 \left| \frac{1}{2}, \frac{1}{2} \right\rangle = 0 \]

\[(\hat{S}^2)_{22} = \left\langle \frac{1}{2}, -\frac{1}{2} \right| \hat{S}^2 \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{3\hbar^2}{4} \]

Άρα

\[S^2 = \frac{3\hbar^2}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (17) \]

Όπως αναμέναμε, ο \(S^2 \) είναι διαγώνιος, με στοιχεία την ιδιοτιμή, \(\frac{3\hbar^2}{4} \), του τελεστή \(\hat{S}^2 \).

2. Καταστάσεις του σπιν 1/2 – Σπίνορες (Spinors)

Όπως αναφέραμε, οι ιδιοκαταστάσεις των τελεστών \(\hat{S}^2 \) και \(\hat{z} \), δηλαδή το σύνολο \(\left\{ \left| \frac{1}{2}, \frac{1}{2} \right\rangle, \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right\} \), αποτελεί ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1/2. Κατά συνέπεια, μια τυχαία κατάσταση του σπιν \(\frac{1}{2} \), ας τη συμβολίσουμε με
||, ως γραμμικός συνδυασμός των δύο ιδιοκαταστάσεων | 1 1 1 1, -1 2 2 2 |, δηλαδή

\[|\psi\rangle = a \left| \frac{1}{2}, \frac{1}{2} \right\rangle + b \left| \frac{1}{2}, -\frac{1}{2} \right\rangle (1) \]

όπου οι συντελεστές του αναπτύγματος, \(a, b\), είναι μιγαδικοί αριθμοί, αφού ο χώρος των καταστάσεων του σπιν \(\frac{1}{2}\) είναι ένας μιγαδικός διανυσματικός χώρος, και ειδικότερα είναι ένας μιγαδικός χώρος Hilbert.

Αν εφαρμόσουμε τη συνθήκη κανονικοποίησης στην κατάσταση \(|\psi\rangle\), θα πάρουμε

\[1 = \langle \psi | \psi \rangle = \left|a \left| \frac{1}{2}, \frac{1}{2} \right\rangle + b \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right|^2 = |a|^2 + |b|^2 \]

\[|a|^2 + |b|^2 = 1 (2) \]

Τότε, από την (1) βλέπουμε ότι το πλάτος πιθανότητας να μετρήσουμε τιμή \(\frac{h}{2}\) για τη \(z\)-συνιστώσα του σπιν \(\frac{1}{2}\) είναι \(\left< \frac{1}{2}, \frac{1}{2} | \psi \right> = a\), ενώ το πλάτος πιθανότητας να μετρήσουμε τιμή \(-\frac{h}{2}\) για τη \(z\)-συνιστώσα του σπιν \(\frac{1}{2}\) είναι \(\left< \frac{1}{2}, -\frac{1}{2} | \psi \right> = b\). Δηλαδή, το πλάτος πιθανότητας το σύστημα μας (το σωμάτιο με σπιν \(\frac{1}{2}\)) να βρεθεί, μετά από μια μέτρηση της \(z\)-συνιστώσας του σπιν του, στην ιδιοκατάσταση \(\left< \frac{1}{2}, \frac{1}{2} \right|\) (σπιν-πάνω) είναι \(a\), ενώ το πλάτος πιθανότητας το σύστημα μας να βρεθεί, μετά από μια μέτρηση της \(z\)-συνιστώσας του σπιν του, στην ιδιοκατάσταση \(\left< \frac{1}{2}, -\frac{1}{2} \right|\) (σπιν-κάτω) είναι \(b\). Οι αντίστοιχες πιθανότητες είναι \(|a|^2\) και \(|b|^2\), και η συνθήκη κανονικοποίησης μάς εξασφαλίζει ότι \(|a|^2 + |b|^2 = 1\).

Θέλουμε τώρα να αναπαραστήσουμε τα διανύσματα βάσης \(\left< 1, \frac{1}{2} \right|\) (σπιν-πάνω) και \(\left< 1, -\frac{1}{2} \right|\) (σπιν-κάτω), καθώς επίσης και την τυχαία κατάσταση \(|\psi\rangle\), με πίνακες.
Υπενθυμίζουμε ότι θεωρούμε το διάνυσμα \(\frac{1}{2}, \frac{1}{2} \) ως πρώτο και το διάνυσμα \(\frac{1}{2}, -\frac{1}{2} \) ως δεύτερο. Αυτή είναι μια αυθαίρετη, πλην όμως αναγκαία, σύμβαση, αφού οι αναπαραστάσεις εξαρτώνται από τη σειρά επιλογής των διανύσματων βάσης.

Επειδή \(\frac{1}{2}, \frac{1}{2} = 0 \frac{1}{2}, -\frac{1}{2} \), αναπαριστούμε το διάνυσμα \(\frac{1}{2}, \frac{1}{2} \) με το διάνυσμα-στήλη (ή πίνακα-στήλη) \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \), καθώς \(\frac{1}{2}, \frac{1}{2} \) → \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \). Βάζουμε βέλος για να δηλώσουμε ότι πρόκειται για αναπαράσταση του διανύσματος \(\frac{1}{2}, \frac{1}{2} \) από το στοιχείο \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

Με την ίδια λογική, επειδή \(\frac{1}{2}, -\frac{1}{2} = 0 \frac{1}{2}, -\frac{1}{2} \), αναπαριστούμε το διάνυσμα \(\frac{1}{2}, -\frac{1}{2} \) με το διάνυσμα-στήλη (ή πίνακα-στήλη) \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \), και γράφουμε \(\frac{1}{2}, -\frac{1}{2} \) → \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \).

Έτσι, από την (1) συμπεραίνουμε ότι η τυχαία κατάσταση \(|\psi\rangle \) αναπαρίσταται από το διάνυσμα-στήλη (ή πίνακα-στήλη) \(\begin{pmatrix} a \\ b \end{pmatrix} \), δηλαδή \(|\psi\rangle \rightarrow \begin{pmatrix} a \\ b \end{pmatrix} \).

Θυμίζουμε ότι οι αναπαραστάσεις αυτές γίνονται στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}^z \) και \(\hat{S}_z \).

Σημειώσεις
1. Ως γενικός κανόνας, τα ket αναπαριστώνται από διανύσματα-στήλες (ή πίνακα-στήλες), ενώ τα bra αναπαριστώνται από διανύσματα-γραμμές (ή πίνακα-γραμμές), δηλαδή
\[
|\psi\rangle \rightarrow \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix}
\]
και
\[
\langle \psi | \rightarrow (\psi_1^*, \psi_2^*, \ldots, \psi_N^*)
\]
όπου \(N \) είναι η διάσταση του μιγαδικού χώρου Hilbert στον οποίο ανήκει η κατάσταση \(|\psi\rangle \). Αν η \(|\psi\rangle \) είναι κανονισμοποιημένη, τότε
2. Τα διανύσματα-στήλες που αναπαριστούν τις καταστάσεις του σπιν ονομάζονται σπίνορες (spinors). Δηλαδή, τα στοιχεία \(\left(\begin{array}{cc} 1 \\ 0 \end{array} \right) \), \(\left(\begin{array}{cc} 0 \\ 1 \end{array} \right) \), και \(\left(\begin{array}{c} a \\ b \end{array} \right) \) είναι σπίνορες.

3. Εύρεση των ιδιοτιμών και των ιδιοδιανυσμάτων των πινάκων του σπιν 1/2

Με τη βοήθεια της σχέσης (5) της ενότητας 1, η εξίσωση ιδιοτιμών του πίνακα \(S_x \) γράφεται

\[
\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{\hbar}{2} & \lambda \\ \lambda & -\frac{\hbar}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \tag{1}
\]

Το \(\begin{pmatrix} x \\ y \end{pmatrix} \), ως ιδιοδιάνυσμα, πρέπει να είναι γραμμικά ανεξάρτητο, επομένως δεν μπορεί να είναι μηδέν. Έτσι, το ομογενές σύστημα (1) πρέπει να έχει μη μηδενική λύση, άρα

\[
\begin{vmatrix} -\lambda & \frac{\hbar}{2} \\ \frac{\hbar}{2} & -\lambda \end{vmatrix} = 0
\]

Από την προηγούμενη εξίσωση παίρνουμε

\[
\lambda^2 - \left(\frac{\hbar}{2} \right)^2 = 0 \Rightarrow \lambda = \pm \frac{\hbar}{2}
\]

Η τελευταία σχέση μας λέει ότι οι ιδιοτιμές του \(S_x \) είναι \(\pm \frac{\hbar}{2} \), κάτι που αναμέναμε αφού αναπαριστά τον τελεστή \(\hat{S}_x \), τη \(x \)-συνιστώσα του σπιν που, όπως η \(z \)-συνιστώσα, έχει ιδιοτιμές \(\pm \frac{\hbar}{2} \).

Ας βρούμε τα αντίστοιχα ιδιοδιανύσματα. Για \(\lambda = \frac{\hbar}{2} \), το σύστημα (1) γράφεται
\[
\begin{pmatrix}
-\frac{\hbar}{2} & \frac{\hbar}{2} \\
\frac{\hbar}{2} & -\frac{\hbar}{2}
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} = 0 \Rightarrow
\begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} = 0 \Rightarrow
\begin{pmatrix}
x+y \\
x-y
\end{pmatrix} = 0 \Rightarrow
\begin{cases}
-x+y = 0 \\
x-y = 0
\end{cases} \Rightarrow -x+y = 0 \Rightarrow y = x
\]

Επομένως, το ιδιοδιάνυσμα είναι το \(\begin{pmatrix} x \\ x \end{pmatrix} \).

Εφαρμόζουμε τη συνθήκη κανονικοποίησης, και παίρνουμε
\[
(x^* \cdot x^*)\begin{pmatrix} x \\ x \end{pmatrix} = 1 \Rightarrow |x|^2 = 1 \Rightarrow |x| = \frac{1}{\sqrt{2}}
\]

Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων,
\[
x = \frac{1}{\sqrt{2}}
\]

Ετσι, λοιπόν, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_x \), ιδιοτιμής \(\hbar \), είναι το \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Αυτό το ιδιοδιάνυσμα αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_x \) και \(\hat{S}_z \), την ιδιοκατάσταση όπου η \(x \)-συνιστώσα του σπιν είναι \(\frac{\hbar}{2} \). Αν συμβολίσουμε αυτή την ιδιοκατάσταση με \(|x, \uparrow\rangle \) (σπιν-πάνω στον άξονα \(x \)), τότε
\[
|x, \uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

Για να βρούμε το ιδιοδιάνυσμα ιδιοτιμής \(-\frac{\hbar}{2} \) μπορούμε να κάνουμε τα ίδια. Ωστόσο, μπορούμε να το γράψουμε αμέσως αν σκεφτούμε ότι πρέπει να είναι ορθογώνιο στο ιδιοδιάνυσμα \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Ο πίνακας \(S_x \) είναι ερμιτιανός, επομένως τα ιδιοδιανύσματά του είναι μεταξύ τους κάθετα. Επειδή ο χώρος μας είναι διδιάστατος, υπάρχει μόνο μία κάθετη διεύθυνση σε μια δοθείσα. Επομένως, με εξαίρεση μια σταθερή φάση, που είναι απόρροια της συμμετρίας φάσης των κβαντικών καταστάσεων, το κανονικοποιημένο ιδιοδιάνυσμα ιδιοτιμής \(-\frac{\hbar}{2} \) είναι το \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \). Ας το ελέγξουμε.

Είναι
\[
\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{\hbar}{2 \sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -\frac{\hbar}{2 \sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

Δηλαδή
Επομένως, το \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \) είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_x \) που αντιστοιχεί στην ιδιοτιμή \(-\frac{h}{2} \), και αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_1 \) και \(\hat{S}_z \), την ιδιοκατάσταση όπου η \(x \)-συνιστώσα του σπιν \(x \), τότε
\[
\begin{pmatrix} x \downarrow \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} (3)
\]
Για τον πίνακα \(S_y \), με τη βοήθεια της σχέσης (8) της ενότητας 1, η εξίσωση ιδιοτιμών του γράφεται
\[
\frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} -\lambda & -\frac{\hbar}{2}i \\ \frac{\hbar}{2}i & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 (4)
\]
Εφόσον το \(\begin{pmatrix} x \\ y \end{pmatrix} \) είναι ιδιοδιάνυσμα, πρέπει να είναι γραμμικά ανεξάρτητο, επομένως δεν μπορεί να είναι μηδέν. Έτσι, το ομογενές σύστημα (4) πρέπει να έχει μη μηδενική λύση, άρα
\[
\begin{vmatrix}
-\lambda & -\frac{\hbar}{2}i \\
\frac{\hbar}{2}i & -\lambda
\end{vmatrix} = 0 \Rightarrow \lambda^2 + \left(\frac{\hbar}{2} \right)^2 = 0 \Rightarrow \lambda^2 = -\left(\frac{\hbar}{2} \right)^2 \Rightarrow \lambda = \pm \frac{\hbar}{2}
\]
Η τελευταία σχέση μάς λέει ότι οι ιδιοτιμές του \(S_y \) είναι \(\pm \frac{\hbar}{2} \), κάτι που αναμέναμε αφού αναπαριστά τον τελεστή \(\hat{S}_y \), την \(y \)-συνιστώσα του σπιν, την \(y \)-συνιστώσα του σπιν που, όπως η \(z \)-συνιστώσα, έχει ιδιοτιμές \(\pm \frac{\hbar}{2} \).
Για \(\lambda = \frac{\hbar}{2} \), το σύστημα (4) γράφεται
\[
\begin{pmatrix}
-\frac{\hbar}{2} & -\frac{i\hbar}{2} \\
\frac{i\hbar}{2} & \frac{\hbar}{2}
\end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} -1 & -i \\ i & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} -x - iy \\ ix - y \end{pmatrix} = 0 \Rightarrow \begin{cases} -x - iy = 0 \\ ix - y = 0 \end{cases}
\]
\[
\Rightarrow \begin{cases} ix - y = 0 \Rightarrow y = ix
\end{cases}
\]
Επομένως, το ιδιοδιάνυσμα είναι το \(\begin{pmatrix} x \\ \ell x \end{pmatrix} \).

Εφαρμόζουμε τη συνθήκη κανονικοποίησης, και παίρνουμε
\[|x|^2 + |\ell x|^2 = 1 \Rightarrow 2|x|^2 = 1 \Rightarrow |x| = \frac{1}{\sqrt{2}} \]

Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων,
\[x = \frac{1}{\sqrt{2}} \]

Έτσι, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_y \), ιδιοτιμής \(\frac{\hbar}{2} \), είναι το \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \). Αυτό το ιδιοδιάνυσμα αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_z \) και \(\hat{S}_y \), την ιδιοκατάσταση όπου η \(y \)-συνιστώσα του σπιν είναι \(\frac{\hbar}{2} \).

Αν συμβολίσουμε αυτήν την ιδιοκατάσταση με \(\left| y; \uparrow \right> \) (σπιν-πάνω στον άξονα \(y \)), τότε
\[\left| y; \uparrow \right> \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \] (5)

Μπορούμε να γράψουμε αμέσως το ιδιοδιάνυσμα ιδιοτιμής \(-\frac{\hbar}{2}\), αν σκεφτούμε ότι πρέπει να είναι κάθετο \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \), επομένως είναι το \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \). Πράγματι, είναι
\[\frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = \frac{\hbar}{2} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = -\frac{\hbar}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \]

Δηλαδή
\[S_y \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} = -\frac{\hbar}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \]

Αυτό είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_y \) με ιδιοτιμή \(-\frac{\hbar}{2}\), δηλαδή αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_y \) και \(\hat{S}_z \), την ιδιοκατάσταση όπου η \(y \)-συνιστώσα του σπιν είναι \(-\frac{\hbar}{2}\) (σπιν-κάτω στον άξονα \(y \)). Επομένως
\[\left| y; \downarrow \right> \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \] (6)

Σημείωση
Η "ελευθερία" μιας σταθερής φάσης που συνοδεύει τις κβαντικές καταστάσεις, η οποία είναι απόρροια της συμμετρίας φάσης, δηλαδή του γεγονότος ότι οι καταστάσεις $|\psi\rangle$ και $\exp(i\phi)|\psi\rangle$ (όπου ϕ μια σταθερή μονάδα) είναι ψυχικά ισοδύναμες, ισχύει και για τις αναπαραστάσεις των κβαντικών καταστάσεων. Επομένως, τα ιδιοδιάνυσματα των πινάκων του σπιν η συνεργαστή μιας σταθερής φάσης.

Έτσι, για παράδειγμα, αντι του $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix}$ θα μπορούσαμε να επιλέξουμε το $\frac{1}{\sqrt{2}}\begin{pmatrix} i \\ 1 \end{pmatrix}$ για ιδιοδιάνυσμα του S_y με ιδιοτιμή $-\frac{\hbar}{2}$. Πράγματι, είναι

$$\frac{\hbar}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix} = \frac{\hbar}{2\sqrt{2}}\begin{pmatrix} i \\ -1 \end{pmatrix} = -\frac{\hbar}{2}\frac{1}{\sqrt{2}}\begin{pmatrix} i \\ 1 \end{pmatrix}$$

Δηλαδή

$$S_y\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ i \end{pmatrix} = -\frac{\hbar}{2}\frac{1}{\sqrt{2}}\begin{pmatrix} i \\ 1 \end{pmatrix}$$

Επίσης έχει

$$\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix} = -i\frac{1}{\sqrt{2}}\begin{pmatrix} i \\ 1 \end{pmatrix} \Rightarrow \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -i \end{pmatrix} = \exp\left(\frac{3\pi i}{2}\right)\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ i \end{pmatrix}$$

Δηλαδή, τα δύο ιδιοδιάνυσματα συνδέονται με μια σταθερή φάση $\varphi = \frac{3\pi}{2}$.

Όσον αφορά τον πίνακα S_z, αυτός είναι διαγόνιος, όπως βλέπουμε από τη σχέση (11) της ενότητας 1, κάτι αναμενόμενο, αφού η βάση της αναπαράστασης είναι τα ιδιοδιανύσματα του τελεστή \hat{S}_z (και του \hat{S}_z^2). Επομένως, οι ιδιοτιμές του πίνακα S_z είναι τα στοιχεία της διαγώνιον του, δηλαδή $\pm \frac{\hbar}{2}$, και τα ιδιοδιανύσματα του πίνακα S_z είναι οι αναπαραστάσεις των ιδιοκατάστασεων του τελεστή \hat{S}_z, δηλαδή των ιδιοκατάστασεων $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, που αντιστοιχεί στην ιδιοτιμή $\frac{\hbar}{2}$ (στιν-πάνω στον άξονα z), και $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, που αντιστοιχεί στην ιδιοτιμή $-\frac{\hbar}{2}$ (στιν-κάτω στον άξονα z).

Ακολουθώντας τον συμβολισμό που χρησιμοποιήσαμε για τις ιδιοκατάστασες των τελεστών \hat{S}_x και \hat{S}_y, θα συμβολίσουμε με $|z;\uparrow\rangle$ την ιδιοκατάσταση $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ και με $|z;\downarrow\rangle$ την ιδιοκατάσταση $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Όπως είδαμε στην ενότητα 2, η ιδιοκατάσταση $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ αναπαρίσταται από τον σπίνορα $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, και η ιδιοκατάσταση $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ από τον σπίνορα $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, δηλαδή

$|z;\uparrow\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (7)
Σημείωση
Το \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_z \) που αντιστοιχεί στην ιδιοτιμή \(\frac{h}{2} \) και το \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) είναι το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_z \) που αντιστοιχεί στην ιδιοτιμή \(-\frac{h}{2} \). Αν δεν έχετε πειστεί, μπορείτε εύκολα να το ελέγξετε!

4. Σε μια τυχαία κατάσταση του σπιν \(1/2 \), υπολογισμός των πιθανοτήτων μέτρησης των ιδιοτιμών των τριών συνιστωσών του

Για μια τυχαία κατάσταση \(|\psi\rangle \) του σπιν, θα υπολογίσουμε τις ακόλουθες πιθανότητες:

i) \(\eta \) x-συνιστώσα του σπιν \(|\psi\rangle \) την ιδιοτιμή \(\frac{h}{2} \)

ii) \(\eta \) x-συνιστώσα του σπιν \(|\psi\rangle \) την ιδιοτιμή \(-\frac{h}{2} \)

iii) \(\eta \) y-συνιστώσα του σπιν \(|\psi\rangle \) την ιδιοτιμή \(\frac{h}{2} \)

iv) \(\eta \) y-συνιστώσα του σπιν \(|\psi\rangle \) την ιδιοτιμή \(-\frac{h}{2} \)

v) \(\eta \) z-συνιστώσα του σπιν \(|\psi\rangle \) την ιδιοτιμή \(\frac{h}{2} \)

vi) \(\eta \) z-συνιστώσα του σπιν \(|\psi\rangle \) την ιδιοτιμή \(-\frac{h}{2} \)

Αν για τις ιδιοκαταστάσεις των τριών συνιστωσών του τελεστή του σπιν χρησιμοποιήσουμε τον συμβολισμό της ενότητας 3, μπορούμε να γράψουμε τα πλάτη των πιθανοτήτων i – vi ως εξής:

\[\langle x; \uparrow | \psi \rangle, \langle x; \downarrow | \psi \rangle, \langle y; \uparrow | \psi \rangle, \langle y; \downarrow | \psi \rangle, \langle z; \uparrow | \psi \rangle, \text{ και } \langle z; \downarrow | \psi \rangle \]

Στις ενότητες 2 και 3, υπολογίσαμε τις αναπαραστάσεις (σπίνορες) όλων των εμπλεκόμενων καταστάσεων στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_z \) και \(\hat{S}_y \). Μπορούμε τώρα να χρησιμοποιήσουμε τους σπίνορες που βρήκαμε για να υπολογίσουμε τα πλάτη και τις ζητούμενες πιθανότητες.

Σημείωση
Οπως γνωρίζουμε από τη διανυσματική ανάλυση, το ισωτερικό γνώμονα δύο διανυσμάτων, \(\hat{x} \hat{y} \), δεν εξαρτάται από το σύστημα συντεταγμένων που χρησιμοποιούμε για να το υπολογίσουμε. Μπορούμε να το υπολογίσουμε σε οποιοδήποτε σύστημα συντεταγμένων, ή ακόμα και αρχηγημένα, δηλαδή χωρίς να «καταφύγομε» σε κάποιο σύστημα συντεταγμένων.
Το ίδιο ισχύει και για τα εσωτερικά γνώμενα μεταξύ κβαντικών καταστάσεων, όπου τώρα το σύστημα αυτό συντεταγμένων είναι η βάση που χρησιμοποιούμε, στον χώρο των καταστάσεων, για να ακριβέσουμε - να αναπαραστήσουμε - τις κβαντικές καταστάσεις (ή και τους τελεστές) που μας ενδιαφέρουν.

Πριν προχωρήσουμε, ας ξαναγράψουμε, συγκεντρωτικά, τους σπίνορες που μας ενδιαφέρουν, όπως τους υπολογίσαμε στις ενότητες 2 και 3.

\[
|\psi\rangle \rightarrow \begin{pmatrix} a \\ b \end{pmatrix}, \text{ με } |a|^2 + |b|^2 = 1
\]

\[
|x; \uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
|x; \downarrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

\[
|y; \uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}
\]

\[
|y; \downarrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}
\]

\[
|z; \uparrow\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

\[
|z; \downarrow\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

Επομένως, τα ζητούμενα πλάτη είναι

\[
\langle x; \uparrow | \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{a+b}{\sqrt{2}}
\]

\[
\langle x; \downarrow | \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{a-b}{\sqrt{2}}
\]

\[
\langle y; \uparrow | \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{a-ib}{\sqrt{2}}
\]

\[
\langle y; \downarrow | \psi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{a+ib}{\sqrt{2}}
\]

\[
\langle z; \uparrow | \psi \rangle = (1 \ 0) \begin{pmatrix} a \\ b \end{pmatrix} = a
\]

\[
\langle z; \downarrow | \psi \rangle = (0 \ 1) \begin{pmatrix} a \\ b \end{pmatrix} = b
\]

Σημείωση
Θυμίζουμε ότι αν $|\varphi\rangle \rightarrow \begin{pmatrix} x \\ y \end{pmatrix}$, τότε $\langle \varphi | \rightarrow (x^* \ y^*)$

Έτσι, οι ζητούμενες πιθανότητες είναι:

i) $P(x; \uparrow) = \left| \langle x; \uparrow | \psi \rangle \right|^2 = \frac{|a+b|^2}{2}$

ii) $P(x; \downarrow) = \left| \langle x; \downarrow | \psi \rangle \right|^2 = \frac{|a-b|^2}{2}$

iii) $P(y; \uparrow) = \left| \langle y; \uparrow | \psi \rangle \right|^2 = \frac{|a-ib|^2}{2}$

iv) $P(y; \downarrow) = \left| \langle y; \downarrow | \psi \rangle \right|^2 = \frac{|a+ib|^2}{2}$

v) $P(z; \uparrow) = \left| \langle z; \uparrow | \psi \rangle \right|^2 = |a|^2$

vi) $P(z; \downarrow) = \left| \langle z; \downarrow | \psi \rangle \right|^2 = |b|^2$

Παρατηρούμε ότι

$$P(x; \uparrow) + P(x; \downarrow) = \frac{|a+b|^2}{2} + \frac{|a-b|^2}{2} = \frac{(a+b)(a^*+b^*)+(a-b)(a^*-b^*)}{2} = \frac{|a|^2+|b|^2+ab^*-a^*b+|a|^2+|b|^2-ab^*-a^*b}{2} = 1$$

$P(y; \uparrow) + P(y; \downarrow) = 1$

Επίσης, έχουμε

$$P(y; \uparrow) + P(y; \downarrow) = \frac{|a-ib|^2}{2} + \frac{|a+ib|^2}{2} = \frac{(a-ib)(a^*+ib^*)+(a+ib)(a^*-ib^*)}{2} = \frac{|a|^2+|b|^2+ia^*b-ia^*b+|a|^2-ia^*b+ia^*b}{2} = 1$$

$P(z; \uparrow) + P(z; \downarrow) = 1$

Και

$P(z; \uparrow) + P(z; \downarrow) = |a|^2 + |b|^2 = 1$

Σε κάθε έναν από τους τρεις άξονες, το σπιν έχει δύο τιμές, τις ιδιοτιμές του αντίστοιχου τελεστή, δηλαδή $\frac{\hbar}{2}$ (σπιν-πάνω) και $-\frac{\hbar}{2}$ (σπιν-κάτω). Επομένως, σε
κάθε άξονα, το άθροισμα της πιθανότητας να μετρήσουμε σπιν-πάνω και της πιθανότητας να μετρήσουμε σπιν-κάτω πρέπει να είναι 1, όπως και είναι.

5. Ασκήσεις

1) Θα δείξουμε ότι αν η κατάσταση του σπιν είναι μια ιδιοκατάσταση του τελεστή \(\hat{\Sigma}_x \), τότε οι ακόλουθες πιθανότητες:

\(\eta \ y \)-συνιστώσα του σπιν είναι \(\frac{h}{2} \), \(\eta \ y \)-συνιστώσα του σπιν είναι \(\frac{-h}{2} \), \(\eta \ z \)-συνιστώσα του σπιν είναι \(\frac{h}{2} \), \(\eta \ z \)-συνιστώσα του σπιν είναι \(\frac{-h}{2} \), είναι όλες \(\frac{1}{2} \) (50%), και το ίδιο ισχύει αν η κατάσταση του σπιν είναι ιδιοκατάσταση του \(\hat{\Sigma}_y \) ή του \(\hat{\Sigma}_z \), για τις άλλες δύο συνιστώσες του σπιν, αντίστοιχα. Με άλλα λόγια, θα δείξουμε ότι αν μία από τις τρεις συνιστώσες του σπιν είναι καθορισμένη, τότε στους δύο άλλους άξονες, η πιθανότητα μέτρησης σπιν-πάνω \(\frac{h}{2} \) είναι ίση με την πιθανότητα μέτρησης σπιν-κάτω \(\frac{-h}{2} \).

Αύξη

Είδαμε ότι, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{\Sigma}^z \) και \(\hat{\Sigma}_x \), η τυχαία κατάσταση \(|\psi\rangle \) του σπιν αναπαρίσταται από τον σπίνορα \(\begin{pmatrix} a \\ b \end{pmatrix} \), δηλαδή

\[|\psi\rangle \rightarrow \begin{pmatrix} a \\ b \end{pmatrix}, \text{ με } |a|^2 + |b|^2 = 1. \]

Αν η κατάσταση \(|\psi\rangle \) είναι ιδιοκατάσταση του \(\hat{\Sigma}_x \), τότε \(|\psi\rangle = |x; \uparrow\rangle \) ή \(|\psi\rangle = |x; \downarrow\rangle \). Ας δούμε εξεχωριστά τις δύο περιπτώσεις.

i) \(|\psi\rangle = |x; \uparrow\rangle \)

Δείξαμε ότι \(|x; \uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \), άρα \(|\psi\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Επομένως

\[\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow a = b = \frac{1}{\sqrt{2}}. \]

Έτσι, οι πιθανότητες i – νί της προηγουμένης ενότητας γράφονται

\[P(x; \uparrow) = \left| \frac{a + b}{2} \right|^2 = \frac{2}{4} = 1 \text{ (αναμενόμενο, αφού } |\psi\rangle = |x; \uparrow\rangle \) \]

\[P(x; \downarrow) = \left| \frac{a - b}{2} \right|^2 = 0 \text{ (αναμενόμενο, αφού πρέπει } P(x; \uparrow) + P(x; \downarrow) = 1 \) \]

17

16/11/2017
\[P(y; \uparrow) = \frac{|a - ib|^2}{2} = \frac{\left| \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right|^2}{2} = \frac{1}{4} \| -i \|^2 = \frac{1}{4} \ast 2 = \frac{1}{2} \text{ ή } 50\% \]

\[P(y; \downarrow) = \frac{|a + ib|^2}{2} = \frac{\left| \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right|^2}{2} = \frac{1}{4} \| +i \|^2 = \frac{1}{2} \text{ ή } 50\% \]

\[P(z; \uparrow) = |a|^2 = \frac{1}{2} \text{ ή } 50\% \]

\[P(z; \downarrow) = |b|^2 = \frac{1}{2} \text{ ή } 50\% \]

ii) \(|\psi\rangle = |x; \downarrow\rangle\)

Δείξαμε ότι \(|x; \downarrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \), αρα \(|\psi\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \). Επομένως

\[
\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow a = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}, \ b = -\frac{1}{\sqrt{2}}
\]

Έτσι, οι πιθανότητες i–vi της προηγούμενης ενότητας γράφονται

\[P(x; \uparrow) = \frac{|a + b|^2}{2} = 0 \]

\[P(x; \downarrow) = \frac{|a - b|^2}{2} = \frac{2}{\sqrt{2}} = 1 \text{ (αναμενόμενο, αφού } |\psi\rangle = |x; \downarrow\rangle) \]

\[P(y; \uparrow) = \frac{|a - ib|^2}{2} = \frac{\left| \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right|^2}{2} = \frac{1}{4} \| -i \|^2 = \frac{1}{4} \ast 2 = \frac{1}{2} \text{ ή } 50\% \]

\[P(y; \downarrow) = \frac{|a + ib|^2}{2} = \frac{\left| \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right|^2}{2} = \frac{1}{4} \| +i \|^2 = \frac{1}{4} \ast 2 = \frac{1}{2} \text{ ή } 50\% \]

\[P(z; \uparrow) = |a|^2 = \frac{1}{2} \text{ ή } 50\% \]

\[P(z; \downarrow) = |b|^2 = \frac{1}{2} \text{ ή } 50\% \]

Αν η κατάσταση \(|\psi\rangle\) είναι ιδιοκατάσταση του \(\hat{S}_x\), τότε \(|\psi\rangle = |y; \uparrow\rangle\) ή \(|\psi\rangle = |y; \downarrow\rangle\).

i) \(|\psi\rangle = |y; \uparrow\rangle\)

Δείξαμε ότι \(|y; \uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \), αρα \(|\psi\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \). Επομένως
\[
\begin{pmatrix}
 a \\
 b
\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}
 1 \\
 i
\end{pmatrix} \Rightarrow a = \frac{1}{\sqrt{2}}, \ b = \frac{i}{\sqrt{2}}
\]

Έτσι, οι πιθανότητες \(i - v \) της προηγούμενης ενότητας γράφονται

\[
P(x; \uparrow) = \frac{|a + bi|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 + i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(x; \downarrow) = \frac{|a - bi|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 - i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(y; \uparrow) = \frac{|a - ib|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 + i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(y; \downarrow) = \frac{|a + ib|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 - i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(z; \uparrow) = |a|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(z; \downarrow) = |b|^2 = \frac{1}{2} \quad \text{η 50%}
\]

ii) \(|\psi\rangle = |y; \downarrow\rangle \)

Δείξαμε ότι \(|y; \downarrow\rangle \rightarrow \frac{1}{\sqrt{2}} \left(\begin{smallmatrix} 1 \\ -i \end{smallmatrix} \right) \), άρα \(|\psi\rangle \rightarrow \frac{1}{\sqrt{2}} \left(\begin{smallmatrix} 1 \\ -i \end{smallmatrix} \right) \). Επομένως

\[
\begin{pmatrix}
 a \\
 b
\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}
 1 \\
 -i
\end{pmatrix} \Rightarrow a = \frac{1}{\sqrt{2}}, \ b = -\frac{i}{\sqrt{2}}
\]

Έτσι, οι πιθανότητες \(i - v \) της προηγούμενης ενότητας γράφονται

\[
P(x; \uparrow) = \frac{|a + bi|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 + i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(x; \downarrow) = \frac{|a - bi|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 - i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(y; \uparrow) = \frac{|a - ib|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 + i|^2 = \frac{1}{2} \quad \text{η 50%}
\]

\[
P(y; \downarrow) = \frac{|a + ib|^2}{2} = \frac{1}{\sqrt{2}} = \frac{1}{2} |1 - i|^2 = \frac{1}{2} = 0
\]
\[
P(y; \downarrow) = \frac{|a + ib|^2}{2} = \frac{\left| \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right|^2}{2} = \frac{\left| \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right|^2}{2} = 1 \text{ (αναμενόμενο, αφού } |\psi\rangle = |y; \downarrow\rangle) \]

\[
P(z; \uparrow) = |a|^2 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} \text{ ή 50%} \]

\[
P(z; \downarrow) = |b|^2 = \left| -\frac{i}{\sqrt{2}} \right|^2 = \frac{1}{2} \text{ ή 50%} \]

Αν η κατάσταση \(|\psi\rangle\) είναι ιδιοκατάσταση του \(\hat{S}_z\), τότε \(|\psi\rangle = |z; \uparrow\rangle \text{ ή } |\psi\rangle = |z; \downarrow\rangle\).

i) \(|\psi\rangle = |z; \uparrow\rangle\)

Δείξαμε ότι \(|z; \uparrow\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}\), άρα \(|\psi\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}\). Επομένως

\[
\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow a = 1, \ b = 0
\]

Έτσι, οι πιθανότητες \(i - vi\) της προηγούμενης ενότητας γράφονται

\[
P(x; \uparrow) = \frac{|a + b|^2}{2} = \frac{1}{2} \text{ ή 50%} \]

\[
P(x; \downarrow) = \frac{|a - b|^2}{2} = \frac{1}{2} \text{ ή 50%} \]

\[
P(y; \uparrow) = \frac{|a - ib|^2}{2} = \frac{1}{2} \text{ ή 50%} \]

\[
P(y; \downarrow) = \frac{|a + ib|^2}{2} = \frac{1}{2} \text{ ή 50%} \]

\[
P(z; \uparrow) = |a|^2 = 1 \text{ (αναμενόμενο, αφού } |\psi\rangle = |z; \uparrow\rangle) \]

\[
P(z; \downarrow) = |b|^2 = 0
\]

ii) \(|\psi\rangle = |z; \downarrow\rangle\)

Δείξαμε ότι \(|z; \downarrow\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}\), άρα \(|\psi\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}\). Επομένως

\[
\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow a = 0, \ b = 1
\]

Έτσι, οι πιθανότητες \(i - vi\) της προηγούμενης ενότητας γράφονται

\[
P(x; \uparrow) = \frac{|a + b|^2}{2} = \frac{1}{2} \text{ ή 50%} \]
\[
P(x; \downarrow) = \frac{|a-b|^2}{2} = \frac{|-1|^2}{2} = \frac{1}{2} \text{ ή } 50\%
\]
\[
P(y; \uparrow) = \frac{|a-ib|^2}{2} = \frac{|-i|^2}{2} = \frac{1}{2} \text{ ή } 50\%
\]
\[
P(y; \downarrow) = \frac{|a+ib|^2}{2} = \frac{|i|^2}{2} = \frac{1}{2} \text{ ή } 50\%
\]
\[
P(z; \uparrow) = |a|^2 = 0
\]
\[
P(z; \downarrow) = |b|^2 = 0 \text{ (αναμενόμενο, αφού } |\psi\rangle = |z; \downarrow\rangle)
\]

2) Σε μια τυχαία κατάσταση του σπιν, θα υπολογίσουμε, με δύο τρόπους, τις μέσες τιμές των τριών συνιστωσών του, δηλαδή τις μέσες τιμές \(\langle \hat{S}_x \rangle, \langle \hat{S}_y \rangle, \langle \hat{S}_z \rangle \).

Λύση

Δείξαμε ότι η τυχαία κατάσταση \(|\psi\rangle \) αναπαρίσταται, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_x \) και \(\hat{S}_y \), από τον σπίνο \(\begin{pmatrix} a \\ b \end{pmatrix} \), δηλαδή \(|\psi\rangle \rightarrow \begin{pmatrix} a \\ b \end{pmatrix} \), με \(|a|^2 + |b|^2 = 1\). Επίσης, δείξαμε ότι, στην ίδια βάση, οι τελεστές \(\hat{S}_x, \hat{S}_y, \hat{S}_z \) αναπαριστώνται από τους πίνακες \(S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), \(S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \), \(S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).

Οι ζητούμενες μέσες τιμές είναι
\[
\langle \hat{S}_x \rangle = \langle \psi | \hat{S}_x | \psi \rangle, \quad \langle \hat{S}_y \rangle = \langle \psi | \hat{S}_y | \psi \rangle, \quad \text{και} \quad \langle \hat{S}_z \rangle = \langle \psi | \hat{S}_z | \psi \rangle
\]

Οι μέσες τιμές δεν εξαρτώνται από τη βάση που χρησιμοποιούμε, στον χώρο των καταστάσεων, για να εκφράσουμε – να αναπαραστήσουμε – τις κβαντικές καταστάσεις και του τελεστές. Επομένως, μπορούμε να χρησιμοποιήσουμε τις αναπαραστάσεις των τελεστών \(\hat{S}_x, \hat{S}_y, \hat{S}_z \) και της κατάστασης \(|\psi\rangle \) που έχουμε υπολογίσει στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_x \) και \(\hat{S}_y \).

Θα έχουμε
\[
\langle \hat{S}_x \rangle = \langle \psi | \hat{S}_x | \psi \rangle = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} a^* & b^* \\ b & a \end{pmatrix} = \frac{\hbar}{2} (a^* b + ab^*) = \frac{\hbar}{2} (ab^* + (ab^*)^*) = \frac{\hbar}{2} 2 \text{ Re}(ab^*)
\]

Δηλαδή
\[
\langle \hat{S}_x \rangle = \text{Re}(ab^*) \hbar \ (1)
\]
Σημείωση
Θυμίζουμε ότι αν \(|ψ⟩ \to \begin{pmatrix} a \\ b \end{pmatrix} \), τότε \(⟨ψ | \to ⟨a^* \ b^* | \)

Με τον ίδιο τρόπο, υπολογίζουμε και τις άλλες δύο μέσες τιμές.

\[
\langle \hat{S}_x \rangle = \langle ψ | \hat{S}_x | ψ \rangle = (a^* \ b^*) \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{\hbar}{2} (a^* \ b^*)(-ib) - \frac{\hbar}{2} (-a^* b + ab^*) = \\
= \frac{\hbar}{2} (ab^* - (ab^*)^*) = \frac{i\hbar}{2} 2i \text{Im}(ab^*)
\]

Δηλαδή
\[
\langle \hat{S}_x \rangle = -\text{Im}(ab^*) \hbar \quad (2)
\]

Και

\[
\langle \hat{S}_z \rangle = \langle ψ | \hat{S}_z | ψ \rangle = (a^* \ b^*) \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{\hbar}{2} (a^* \ b^*)(-b) = \frac{\hbar}{2} (|a|^2 - |b|^2)
\]

Δηλαδή
\[
\langle \hat{S}_z \rangle = \frac{\hbar}{2} (|a|^2 - |b|^2) \quad (3)
\]

Θα υπολογίσουμε τώρα τις ζητούμενες μέσες τιμές χρησιμοποιώντας τις πιθανότητες \(i - vi \) που υπολογίσαμε στην ενότητα 4.

Είναι

\[
\langle \hat{S}_x \rangle = P(x; \uparrow) \frac{\hbar}{2} + P(x; \downarrow) \left(-\frac{\hbar}{2} \right) = \frac{\hbar}{2} (P(x; \uparrow) - P(x; \downarrow)) = \\
= \frac{\hbar}{2} \left(\frac{|a + b|}{2} - \frac{|a - b|}{2} \right) = \frac{\hbar}{4} ((a + b)(a^* + b^*) - (a - b)(a^* - b^*)) = \\
= \frac{\hbar}{4} (|a|^2 + |b|^2 + ab^* + a^* b - |a|^2 - |b|^2 + ab^* + a^* b) = \frac{\hbar}{4} (2ab^* + 2a^* b) = \\
= \frac{\hbar}{2} (ab^* + (ab^*)^*) = \frac{\hbar}{2} 2 \text{Re}(ab^*) = \text{Re}(ab^*) \hbar
\]

Δηλαδή \(\langle \hat{S}_x \rangle = \text{Re}(ab^*) \hbar \), που είναι το αποτέλεσμα (1).

Με τον ίδιο τρόπο, θα έχουμε

\[
\langle \hat{S}_y \rangle = P(y; \uparrow) \frac{\hbar}{2} + P(y; \downarrow) \left(-\frac{\hbar}{2} \right) = \frac{\hbar}{2} (P(y; \uparrow) - P(y; \downarrow)) = \\
= \frac{\hbar}{2} \left(\frac{|a - ib|}{2} - \frac{|a + ib|}{2} \right) = \frac{\hbar}{4} ((a - ib)(a^* + ib^*) - (a + ib)(a^* - ib^*)) = \\
= \frac{\hbar}{4} (|a|^2 - |b|^2 + iab^* - i^2 b - (|a|^2 - |b|^2 + iab^* + ia^* b)) = \
\]

22
16/11/2017
= \frac{\hbar}{4}(|a|^2 + |b|^2 + iab^* - ia^*b - |a|^2 + i|b|^2 + iab^* - ia^*b) = \\
= \frac{\hbar}{4}(2iab^* - 2ia^*b) = \frac{i\hbar}{2}(ab^* - (ab^*)^*) = \frac{i\hbar}{2}2i \text{Im}(ab^*) = - \text{Im}(ab^*) \hbar

Δηλαδή \(\langle \hat{S}_z \rangle = - \text{Im}(ab^*) \hbar \), που είναι το αποτέλεσμα (2).

Και

\[\langle \hat{S}_z \rangle = P(z;\uparrow)\frac{\hbar}{2} + P(z;\downarrow)(-\frac{\hbar}{2}) = \frac{\hbar}{2}(P(z;\uparrow) - P(z;\downarrow)) = \frac{\hbar}{2}(|a|^2 - |b|^2) \]

Δηλαδή \(\langle \hat{S}_z \rangle = \frac{\hbar}{2}(|a|^2 - |b|^2) \), που είναι το αποτέλεσμα (3).

3) Δείξτε ότι δεν υπάρχει κατάσταση του σπιν στην οποία να μηδενίζονται οι μέσες τιμές και των τριών συνιστωσών του, \(\langle \hat{S}_x \rangle, \langle \hat{S}_y \rangle, \langle \hat{S}_z \rangle \). Υπάρχουν καταστάσεις στις οποίες να μηδενίζονται οι μέσες τιμές δύο συνιστωσών του σπιν;

Λύση

Στην προηγούμενη άσκηση, δείξαμε ότι σε μια τυχαία κατάσταση του σπιν, είναι

\[\langle \hat{S}_x \rangle = \text{Re}(ab^*) \hbar, \langle \hat{S}_y \rangle = - \text{Im}(ab^*) \hbar, \text{και } \langle \hat{S}_z \rangle = \frac{\hbar}{2}(|a|^2 - |b|^2), \text{με } |a|^2 + |b|^2 = 1 \]

Αν \(\langle \hat{S}_z \rangle = 0 \), τότε \(|a|^2 - |b|^2| = 0 \Rightarrow |a| = |b| \). Επομένως, οι μιγαδικοί αριθμοί \(a, b \) γράφονται, σε πολική μορφή,

\[a = |a| \exp(i\phi_a) \quad (1) \]
\[b = |a| \exp(i\phi_b) \quad (2) \]

Τότε, αν \(\langle \hat{S}_z \rangle = 0 \), θα έχουμε

\[\text{Re}(ab^*) = 0 \Rightarrow \text{Re}(|a|^2 \exp(i(\phi_a - \phi_b))) = 0 \Rightarrow |a|^2 \cos(\phi_a - \phi_b) = 0 \quad (3) \]

Αν \(|a| = 0 \), τότε από τις (1) και (2) παίρνουμε \(a = b = 0 \), οπότε ο σπίνορας που αναπαριστά την τυχαία κατάσταση του σπιν στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_z \) και \(\hat{S}_y \), είναι \(\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \), δηλαδή έχουμε μια τετριμμένη περίπτωση, στην οποία μηδενίζεται και η τρίτη μέση τιμή, \(\langle \hat{S}_z \rangle = 0 \).

Αν \(|a| = 0 \), τότε από την (3) παίρνουμε \(\cos(\phi_a - \phi_b) = 0 \)

Τότε, αν \(\langle \hat{S}_z \rangle = 0 \), θα έχουμε

\[\text{Im}(ab^*) = 0 \Rightarrow \text{Im}(|a|^2 \exp(i(\phi_a - \phi_b))) = 0 \Rightarrow |a|^2 \sin(\phi_a - \phi_b) = 0 \Rightarrow \sin(\phi_a - \phi_b) = 0 \]

23

16/11/2017
Δηλαδή, \(\sin(\phi_a - \phi_b) = 0 \) και \(\cos(\phi_a - \phi_b) = 0 \), το οποίο είναι αδύνατο αφού πρέπει \(\sin^2(\phi_a - \phi_b) + \cos^2(\phi_a - \phi_b) = 1 \).

Επομένως, δεν υπάρχει κατάσταση στην οποία να μηδενίζονται οι μέσες τιμές και των τριών συνιστωσών του σπιν.

Οι μέσες τιμές δύο συνιστωσών του σπιν μπορούν να είναι μηδενίστε.

Αυτό συμβαίνει όταν η κατάσταση του σπιν είναι ιδιοκατάσταση της τρίτης συνιστώσας, που έχει αναγκαστικά μη μηδενική μέση τιμή. Με άλλο λόγιο, όταν η κατάσταση του σπιν είναι ιδιοκατάσταση του τελεστή \(\hat{S}_z \), τότε \(\langle \hat{S}_z \rangle = 0 \), όταν η κατάσταση του σπιν είναι ιδιοκατάσταση του τελεστή \(\hat{S}_x \), τότε \(\langle \hat{S}_x \rangle = 0 \), και όταν η κατάσταση του σπιν είναι ιδιοκατάσταση του τελεστή \(\hat{S}_y \), τότε \(\langle \hat{S}_y \rangle = 0 \).

4) Σε μια τυχαία κατάσταση του σπιν, θα υπολογίσουμε τις αβεβαιότητες των τριών συνιστωσών του, δηλαδή τις αβεβαιότητες \(\Delta \hat{S}_x, \Delta \hat{S}_y, \Delta \hat{S}_z \).

Λύση

Οι ζητούμενες αβεβαιότητες είναι, αντίστοιχα,

\[\Delta \hat{S}_x = \sqrt{\langle \hat{S}_x^2 \rangle - \langle \hat{S}_x \rangle^2} \]
\[\Delta \hat{S}_y = \sqrt{\langle \hat{S}_y^2 \rangle - \langle \hat{S}_y \rangle^2} \]
\[\Delta \hat{S}_z = \sqrt{\langle \hat{S}_z^2 \rangle - \langle \hat{S}_z \rangle^2} \]

Στην άσκηση 2, υπολογίσαμε τις μέσες τιμές \(\langle \hat{S}_x \rangle, \langle \hat{S}_y \rangle, \langle \hat{S}_z \rangle \) σε μια τυχαία κατάσταση του σπιν, και βρήκαμε ότι

\[\langle \hat{S}_x \rangle = \text{Re}(a^*b)h \]
\[\langle \hat{S}_y \rangle = -\text{Im}(a^*b)h \]
\[\langle \hat{S}_z \rangle = \frac{h}{2} \sqrt{|a|^2 - |b|^2} \]

Για να υπολογίσουμε τις ζητούμενες αβεβαιότητες, χρειαζόμαστε και τις μέσες τιμές των τετραγώνων των τριών συνιστωσών του σπιν, \(\langle \hat{S}_x^2 \rangle, \langle \hat{S}_y^2 \rangle, \langle \hat{S}_z^2 \rangle \), σε μια τυχαία κατάσταση \(|\psi\rangle \). Για να τις υπολογίσουμε, θα χρησιμοποιήσουμε πάλι τις αναπαραστάσεις των τελεστών \(\hat{S}_x, \hat{S}_y, \hat{S}_z \), και της κατάστασης \(|\psi\rangle \) στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}_x \) και \(\hat{S}_z \).

Έτσι, θα έχουμε
\[
\langle \hat{S}_x \rangle = \langle \psi | \hat{S}_x | \psi \rangle = (a^* \ b^*) \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (a \ b) = \\
\left(\frac{\hbar}{2} \right)^2 (a^* \ b^*) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (a \ b) = \left(\frac{\hbar}{2} \right)^2 \left| a^2 + b^2 \right| = \left(\frac{\hbar}{2} \right)^2
\]

Δηλαδή

\[
\langle \hat{S}_x \rangle = \left(\frac{\hbar}{2} \right)^2 \tag{1}
\]

Επομένως, η αβεβαιότητα \(\Delta \hat{S}_x \) είναι

\[
\Delta \hat{S}_x = \sqrt{\frac{\hbar}{2} - \text{Re}(ab^*)} h
\]

Δηλαδή

\[
\Delta \hat{S}_x = \frac{1}{\sqrt{4}} - \left(\text{Re}(ab^*) \right) h \tag{2}
\]

Με τον ίδιο τρόπο, θα έχουμε

\[
\langle \hat{S}_y \rangle = \langle \psi | \hat{S}_y | \psi \rangle = (a^* \ b^*) \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} (a \ b) = \\
\left(\frac{\hbar}{2} \right)^2 (a^* \ b^*) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (a \ b) = \left(\frac{\hbar}{2} \right)^2 \left| a^2 + b^2 \right| = \left(\frac{\hbar}{2} \right)^2
\]

Δηλαδή

\[
\langle \hat{S}_y \rangle = \left(\frac{\hbar}{2} \right)^2 \tag{3}
\]

Επομένως, η αβεβαιότητα \(\Delta \hat{S}_y \) είναι

\[
\Delta \hat{S}_y = \frac{1}{\sqrt{4}} - \left(\text{Im}(ab^*) \right) h \tag{4}
\]

Και

\[
\langle \hat{S}_z \rangle = \langle \psi | \hat{S}_z | \psi \rangle = (a^* \ b^*) \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} (a \ b) = \\
\left(\frac{\hbar}{2} \right)^2 (a^* \ b^*) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (a \ b) = \left(\frac{\hbar}{2} \right)^2 \left| a^2 + b^2 \right| = \left(\frac{\hbar}{2} \right)^2
\]

Δηλαδή

\[
\langle \hat{S}_z \rangle = \left(\frac{\hbar}{2} \right)^2 \tag{5}
\]
Επομένως η αβεβαιότητα $\Delta \hat{S}_z$ είναι

$$\Delta \hat{S}_z = \sqrt{1 - (|a|^2 - |b|^2)^2} \frac{\hbar}{2} \quad (6)$$

Σημείωση
Από τις (1), (3), και (5) βλέπουμε ότι

$$\langle \hat{S}_x^2 \rangle = \langle \hat{S}_y^2 \rangle = \langle \hat{S}_z^2 \rangle = \left(\frac{\hbar}{2} \right)^2 \quad (7)$$

Αυτό είναι αποτέλεσμα του γεγονότος ότι οι πίνακες του Pauli $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ και $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ έχουν την ιδιότητα $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1$.

Πράγματι, είναι

$$\sigma_x^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\sigma_y^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\sigma_z^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Τότε, επειδή $S_x = \frac{\hbar}{2} \sigma_x$, $S_y = \frac{\hbar}{2} \sigma_y$, και $S_z = \frac{\hbar}{2} \sigma_z$, έχουμε

$$S_x^2 = \left(\frac{\hbar}{2} \right)^2 \sigma_x^2 = \left(\frac{\hbar}{2} \right)^2 \left(\frac{\hbar}{2} \right)^2 = \left(\frac{\hbar}{2} \right)^2$$

$\Delta \etaλαδή$

$$S_x^2 = S_y^2 = S_z^2 = \left(\frac{\hbar}{2} \right)^2$$

Επομένως

$$\langle \hat{S}_x^2 \rangle = \langle \psi | \hat{S}_x^2 | \psi \rangle = (a^* \ b^*) S_x^2 \begin{pmatrix} a \\ b \end{pmatrix} = \left(\frac{\hbar}{2} \right)^2 \left(|a|^2 + |b|^2 \right) = \left(\frac{\hbar}{2} \right)^2$$

$$\langle \hat{S}_y^2 \rangle = \langle \psi | \hat{S}_y^2 | \psi \rangle = (a^* \ b^*) S_y^2 \begin{pmatrix} a \\ b \end{pmatrix} = \left(\frac{\hbar}{2} \right)^2 \left(|a|^2 + |b|^2 \right) = \left(\frac{\hbar}{2} \right)^2$$

$$\langle \hat{S}_z^2 \rangle = \langle \psi | \hat{S}_z^2 | \psi \rangle = (a^* \ b^*) S_z^2 \begin{pmatrix} a \\ b \end{pmatrix} = \left(\frac{\hbar}{2} \right)^2 \left(|a|^2 + |b|^2 \right) = \left(\frac{\hbar}{2} \right)^2$$

5) Σε μια τυχαία κατάσταση του σπιν, θα υπολογίσουμε τη μέση τιμή του τετραγώνου του τελεστή του σπιν, δηλαδή τη μέση τιμή του τελεστή \hat{S}^2.

Δίση
Είναι
\[
\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2
\]

Επομένως

\[
\langle \hat{S}^2 \rangle = \langle \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2 \rangle = \langle \hat{S}_x^2 \rangle + \langle \hat{S}_y^2 \rangle + \langle \hat{S}_z^2 \rangle = 3\left(\frac{h}{2}\right)^2
\]

όπου στην τελευταία ισότητα, κάναμε χρήση της σχέσης (7) της προηγούμενης άσκησης.

Επομένως

\[
\langle \hat{S}^2 \rangle = \frac{3h^2}{4} \quad (1)
\]

Η (1) είναι η μέση τιμή του τετραγώνου του τελεστή του σπιν σε μια τυχαία κατάσταση του σπιν, και όπως βλέπουμε, είναι ίδια σε όλες τις καταστάσεις (δεν εξαρτάται από την κατάσταση). Αυτό οφείλεται στο ότι ο τελεστής \(\hat{S}^2 \) έχει την ίδια ιδιοτιμή και στις δύο ιδιοκαταστάσεις του τελεστή \(\hat{S}_z \) (ή του τελεστή \(\hat{S}_x \), ή του τελεστή \(\hat{S}_y \)). Ετσι, στη βάση \(\begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1, -\frac{1}{2} \end{pmatrix} \) των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}^2 \) και \(\hat{S}_z \), η τυχαία κατάσταση \(|\psi\rangle \) του σπιν γράφεται

\[
|\psi\rangle = a\begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} + b\begin{pmatrix} 1, -\frac{1}{2} \end{pmatrix}
\]

Επομένως

\[
\begin{align*}
\hat{S}^2 |\psi\rangle &= \hat{S}^2 \left(a\begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} + b\begin{pmatrix} 1, -\frac{1}{2} \end{pmatrix}\right) = a\hat{S}^2 \begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} + b\hat{S}^2 \begin{pmatrix} 1, -\frac{1}{2} \end{pmatrix} = \\
&= a\frac{1}{2}\left(\frac{1}{2} + 1\right)\frac{h^2}{4} + b\frac{1}{2}\left(1 + 1\right)\frac{h^2}{4} = \\
&= \frac{3h^2}{4} \left(a\begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix} + b\begin{pmatrix} 1, -\frac{1}{2} \end{pmatrix}\right) = \frac{3h^2}{4}|\psi\rangle
\end{align*}
\]

Δηλαδή

\[
\hat{S}^2 |\psi\rangle = \frac{3h^2}{4}|\psi\rangle \quad (2)
\]

Δηλαδή, η δράση του τελεστή \(\hat{S}^2 \) είναι ίδια σε όλες τις καταστάσεις του σπιν. Από τη (2) παίρνουμε

\[
\langle \hat{S}^2 \rangle = \langle \psi | \hat{S}^2 | \psi \rangle = \langle \psi | \frac{3h^2}{4}|\psi\rangle = \frac{3h^2}{4}\langle \psi | \psi \rangle = \frac{3h^2}{4}
\]

6) Θα υπολογίσουμε τις μέσες τιμές και τις αβεβαιότητες των τριών συνιστωσών του σπιν στις ιδιοκαταστάσεις των τριών συνιστωσών του.

Λύση
Στην ενότητα 3, δείχνεται ότι, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \hat{S}_z και \hat{S}_x, οι ιδιοκαταστάσεις των τριών τελεστών του σπιν αναπαρίσταται από τους σπίνορες:

$$|x;\uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$|x;\downarrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$|y;\uparrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$|y;\downarrow\rangle \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

$$|z;\uparrow\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|z;\downarrow\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Επίσης, στην ενότητα 2 είδαμε ότι, στην ίδια βάση, η τυχαία κατάσταση $|\psi\rangle$ του σπιν αναπαρίσταται από τον σπίνορα $\begin{pmatrix} a \\ b \end{pmatrix}$, δηλαδή $|\psi\rangle \rightarrow \begin{pmatrix} a \\ b \end{pmatrix}$.

Έτσι, θα έχουμε

i) Αν $|\psi\rangle = |x;\uparrow\rangle$, τότε $a = b = \frac{1}{\sqrt{2}}$.

Χρησιμοποιώντας τους γενικούς τύπους για τις μέσες τιμές, που βρήκαμε στην άσκηση 2, θα πάρουμε

$$\langle \hat{S}_x \rangle = \text{Re}(ab^*) h = \frac{h}{2}$$

$$\langle \hat{S}_y \rangle = -\text{Im}(ab^*) h = 0$$

$$\langle \hat{S}_z \rangle = \frac{h}{2}(|a|^2 - |b|^2) = 0$$

Οι αβεβαιότητες των τριών συνιστωσών του σπιν είναι

$$\Delta \hat{S}_x = \sqrt{\langle \hat{S}_x^2 \rangle - \langle \hat{S}_x \rangle^2} = \sqrt{\left(\frac{h}{2}\right)^2 - \left(\frac{h}{2}\right)^2} = 0$$

$$\Delta \hat{S}_y = \sqrt{\langle \hat{S}_y^2 \rangle - \langle \hat{S}_y \rangle^2} = \sqrt{\left(\frac{h}{2}\right)^2} - 0 = \frac{h}{2}$$

$$\Delta \hat{S}_z = \sqrt{\langle \hat{S}_z^2 \rangle - \langle \hat{S}_z \rangle^2} = \sqrt{\left(\frac{h}{2}\right)^2} - 0 = \frac{h}{2}$$
όπου χρησιμοποιήσαμε και τη σχέση (7) της άσκησης 4, δηλαδή

\[\langle \hat{\mathcal{S}}_{\chi}^2 \rangle = \langle \hat{\mathcal{S}}_{\gamma}^2 \rangle = \langle \hat{\mathcal{S}}_{\zeta}^2 \rangle = \left(\frac{\hbar}{2} \right)^2 \]

ii) Αν \(|\psi\rangle = |\chi, \downarrow\rangle \), τότε \(a = \frac{1}{\sqrt{2}}, \ b = -\frac{1}{\sqrt{2}} \)

Υπολογίζουμε τις μέσες τιμές και τις αβεβαιότητες των τριών συνιστωσών του σπιν όπως στην περίπτωση i, και παίρνουμε

\[\langle \hat{\mathcal{S}}_{\chi} \rangle = \text{Re}(ab^*)h = -\frac{\hbar}{2} \]

\[\langle \hat{\mathcal{S}}_{\gamma} \rangle = -\text{Im}(ab^*)h = 0 \]

\[\langle \hat{\mathcal{S}}_{\zeta} \rangle = \frac{\hbar}{2} \left| a \right|^2 - \left| b \right|^2 = \frac{\hbar}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = 0 \]

\[\Delta \hat{\mathcal{S}}_{\chi} = \sqrt{\langle \hat{\mathcal{S}}_{\chi}^2 \rangle - \langle \hat{\mathcal{S}}_{\chi} \rangle^2} = \sqrt{\left(\frac{\hbar}{2} \right)^2 - \left(-\frac{\hbar}{2} \right)^2} = 0 \]

\[\Delta \hat{\mathcal{S}}_{\gamma} = \sqrt{\langle \hat{\mathcal{S}}_{\gamma}^2 \rangle - \langle \hat{\mathcal{S}}_{\gamma} \rangle^2} = \sqrt{\left(\frac{\hbar}{2} \right)^2 - 0} = \frac{\hbar}{2} \]

\[\Delta \hat{\mathcal{S}}_{\zeta} = \sqrt{\langle \hat{\mathcal{S}}_{\zeta}^2 \rangle - \langle \hat{\mathcal{S}}_{\zeta} \rangle^2} = \sqrt{\left(\frac{\hbar}{2} \right)^2 - \left(\frac{\hbar}{2} \right)^2} = 0 \]

iii) Αν \(|\psi\rangle = |\gamma, \uparrow\rangle \), τότε \(a = \frac{1}{\sqrt{2}}, \ b = \frac{i}{\sqrt{2}} \)

Έτσι, θα έχουμε

\[\langle \hat{\mathcal{S}}_{\chi} \rangle = \text{Re}(ab^*)h = \text{Re}\left(-\frac{i}{2}\right)h = 0 \]

\[\langle \hat{\mathcal{S}}_{\gamma} \rangle = -\text{Im}(ab^*)h = -\text{Im}\left(-\frac{i}{2}\right)h = \frac{\hbar}{2} \]

\[\langle \hat{\mathcal{S}}_{\zeta} \rangle = \frac{\hbar}{2} \left| a \right|^2 - \left| b \right|^2 = \frac{\hbar}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = 0 \]

\[\Delta \hat{\mathcal{S}}_{\chi} = \sqrt{\langle \hat{\mathcal{S}}_{\chi}^2 \rangle - \langle \hat{\mathcal{S}}_{\chi} \rangle^2} = \sqrt{\left(\frac{\hbar}{2} \right)^2 - 0} = \frac{\hbar}{2} \]

\[\Delta \hat{\mathcal{S}}_{\gamma} = \sqrt{\langle \hat{\mathcal{S}}_{\gamma}^2 \rangle - \langle \hat{\mathcal{S}}_{\gamma} \rangle^2} = \sqrt{\left(\frac{\hbar}{2} \right)^2 - \left(\frac{\hbar}{2} \right)^2} = 0 \]

\[\Delta \hat{\mathcal{S}}_{\zeta} = \sqrt{\langle \hat{\mathcal{S}}_{\zeta}^2 \rangle - \langle \hat{\mathcal{S}}_{\zeta} \rangle^2} = \sqrt{\left(\frac{\hbar}{2} \right)^2 - \left(\frac{\hbar}{2} \right)^2} = 0 \]
iv) Αν $\psi = |y, \downarrow\rangle$, τότε $a = \frac{1}{\sqrt{2}}$, $b = -\frac{i}{\sqrt{2}}$

Έτσι, παίρνουμε

$$\langle \hat{S}_x \rangle = \text{Re} (ab^*) h = \text{Re} \left(\frac{i}{2} \right) h = 0$$

$$\langle \hat{S}_y \rangle = -\text{Im} (ab^*) h = -\text{Im} \left(\frac{i}{2} \right) h = -\frac{h}{2}$$

$$\langle \hat{S}_z \rangle = \frac{h}{2} (|a|^2 - |b|^2) = \frac{h}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = 0$$

$$\Delta \hat{S}_x = \sqrt{\langle \hat{S}_x^2 \rangle - \langle \hat{S}_x \rangle^2} = \sqrt{\frac{h^2}{2} - 0} = \frac{h}{2}$$

$$\Delta \hat{S}_y = \sqrt{\langle \hat{S}_y^2 \rangle - \langle \hat{S}_y \rangle^2} = \sqrt{\frac{h^2}{2} - \left(-\frac{h}{2} \right)^2} = 0$$

$$\Delta \hat{S}_z = \sqrt{\langle \hat{S}_z^2 \rangle - \langle \hat{S}_z \rangle^2} = \sqrt{\frac{h^2}{2} - 0} = \frac{h}{2}$$

v) Αν $\psi = |z, \uparrow\rangle$, τότε $a = 1$, $b = 0$

Έτσι, θα έχουμε

$$\langle \hat{S}_x \rangle = \text{Re} (ab^*) h = 0$$

$$\langle \hat{S}_y \rangle = -\text{Im} (ab^*) h = 0$$

$$\langle \hat{S}_z \rangle = \frac{h}{2} (|a|^2 - |b|^2) = \frac{h}{2}$$

$$\Delta \hat{S}_x = \sqrt{\langle \hat{S}_x^2 \rangle - \langle \hat{S}_x \rangle^2} = \sqrt{\langle \hat{S}_x^2 \rangle} = \frac{h}{2}$$

$$\Delta \hat{S}_y = \sqrt{\langle \hat{S}_y^2 \rangle - \langle \hat{S}_y \rangle^2} = \sqrt{\langle \hat{S}_y^2 \rangle} = \frac{h}{2}$$

$$\Delta \hat{S}_z = \sqrt{1 - (|a|^2 - |b|^2)^2} \frac{h}{2} = 0$$

vi) Αν $\psi = |z, \downarrow\rangle$, τότε $a = 0$, $b = 1$

Έτσι, παίρνουμε

$$\langle \hat{S}_x \rangle = \text{Re} (ab^*) h = 0$$

$$\langle \hat{S}_y \rangle = -\text{Im} (ab^*) h = 0$$

$$\langle \hat{S}_z \rangle = \frac{h}{2} (|a|^2 - |b|^2) = -\frac{h}{2}$$
6. Η προβολή του στιν 1/2 σε έναν τυχαίο άξονα – Ιδιοτιμές και ιδιοκαταστάσεις του αντίστοιχου τελεστή – Συζήτηση

Όπως είδαμε, η x-συνιστώσα του στιν (η προβολή του στιν στιν στον άξονα x) περιγράφεται από τον τελεστή \hat{S}_x, ώστε στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \hat{S}^2 και \hat{S}_x, από τον πίνακα S_x. Αντίστοιχα, η y-συνιστώσα του στιν (η προβολή του στιν στον άξονα y) περιγράφεται από τον τελεστή \hat{S}_y και η z-συνιστώσα του στιν περιγράφεται από τον τελεστή \hat{S}_z.

Θέλουμε τώρα να ορίσουμε την προβολή του στιν στιν σε μια τυχαία διεύθυνση του χώρου, που ορίζεται από ένα μοναδιαίο διάνυσμα \hat{n}. Ξέρουμε από τη διανυσματική ανάλυση ότι το εσωτερικό γινόμενο ενός διανύσματος \hat{a} με το μοναδιαίο διάνυσμα \hat{n} μάς δίνει την προβολή του διανύσματος \hat{a} στον άξονα (στη διεύθυνση) που ορίζει το διάνυσμα \hat{n}. Μπορούμε, λοιπόν, να ορίσουμε την προβολή του στιν σε μια τυχαία διεύθυνση \hat{n} ως το εσωτερικό γινόμενο του τελεστή του στιν \hat{S} με το μοναδιαίο διάνυσμα \hat{n}, δηλαδή

$$\hat{S}_n = \hat{n} \cdot \hat{S}$$ (1)

όπου \hat{S}_n είναι ο τελεστής που περιγράφει το στιν στην τυχαία διεύθυνση \hat{n}.

Επειδή η προβολή του στιν στην τυχαία διεύθυνση είναι παρατηρήσιμο μέγεθος, ο τελεστής \hat{S}_n πρέπει να είναι ερμητικός τελεστής.

Αν n_x, n_y, n_z είναι οι τρεις συνιστώσες του μοναδιαίου διανύσματος \hat{n}, τότε $\hat{n} = (n_x, n_y, n_z)$.

Μπορούμε να γράψουμε τον τελεστή του στιν \hat{S} σε παρόμοια μορφή, δηλαδή σαν διανύσμα, ως $\hat{S} = (\hat{S}_x, \hat{S}_y, \hat{S}_z)$ (τριπλέτα).

Τότε, το εσωτερικό γινόμενο (1) γράφεται

$$\hat{S}_n = n_x \hat{S}_x + n_y \hat{S}_y + n_z \hat{S}_z$$ (2)

Στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \hat{S}^2 και \hat{S}_x, οι τελεστές $\hat{S}_x, \hat{S}_y, \hat{S}_z$ παριστάνονται από τους πίνακες S_x, S_y, S_z που βρήκαμε στην ενότητα 1.

Έτσι, στην ίδια βάση, ο τελεστής \hat{S}_n παριστάνεται από τον πίνακα

$$S_n = n_x S_x + n_y S_y + n_z S_z$$ (3)
Επειδή τα συνιστώσες \(n_x, n_y, n_z \) είναι βαθμωτές πραγματικές συναρτήσεις και οι \(S_x, S_y, S_z \) σταθεροί πίνακες, είναι \(n_x S_x = S_x n_x, n_y S_y = S_y n_y \), και \(n_z S_z = S_z n_z \). Δηλαδή, το εσωτερικό γινόμενο (3) είναι αντιμεταθετικό.

Δείξαμε στην ενότητα 1 ότι

\[
S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \text{και} \quad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

Έτσι, η (3) γράφεται

\[
S_n = n_x \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + n_y \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + n_z \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} n_x & n_x - in_y \\ n_z + in_y & -n_z \end{pmatrix}
\]

Δηλαδή

\[
S_n = \frac{\hbar}{2} \begin{pmatrix} n_x & n_x - in_y \\ n_z + in_y & -n_z \end{pmatrix}
\]

Παρατηρούμε ότι ο πίνακας \(S_n \) είναι ερμιτιανός (οι \(n_x, n_y, n_z \) είναι βαθμωτές πραγματικές συναρτήσεις), όπως αναμέναμε, αφού αναπαρίστα τον ερμιτιανό τελεστή \(\hat{S}_n \).

Μπορούμε τώρα να γράψουμε το μοναδιαίο διάνυσμα \(\hat{n} \) ως \(\hat{n} = \frac{\hat{r}}{r} \), όπου \(\hat{r} = (x, y, z) \) είναι το διάνυσμα θέσης και \(r \) το μέτρο του. Επομένως

\[
\hat{n} = \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right)
\]

Σε σφαιρικές συντεταγμένες

\[
x = r \sin \theta \cos \phi \\
y = r \sin \theta \sin \phi \\
z = r \cos \theta
\]

όπου \(\theta \in [0, \pi] \) είναι η πολική γωνία και \(\phi \in [0, 2\pi] \) η αξιοκνημική γωνία, το μοναδιαίο διάνυσμα \(\hat{n} \) γράφεται

\[
\hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
\]

Δηλαδή

\[
n_x = \sin \theta \cos \phi \quad (5)
\]

\[
n_y = \sin \theta \sin \phi \quad (6)
\]

\[
n_z = \cos \theta \quad (7)
\]

Επομένως

\[
n_x + in_y = \sin \theta \cos \phi + i \sin \theta \sin \phi = \sin \theta (\cos \phi + i \sin \phi) = \sin \theta \exp(i\phi)
\]

\[
n_x - in_y = (n_x + in_y)^* = \sin \theta \exp(-i\phi)
\]
Έτσι, ο πίνακας (4) γράφεται

\[S_n = \frac{\hbar}{2} \begin{pmatrix} \cos \theta & \sin \theta \exp(-i\phi) \\ \sin \theta \exp(i\phi) & -\cos \theta \end{pmatrix} \] (8)

Ο πίνακας (8) αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}^2 \) και \(\hat{S}_z \), την προβολή του στις στις τυχαί τις ιδιοκαταστάσεις του χώρου, που ορίζεται από το μοναδιαίο διάνυσμα \(\hat{n} \) ή, ισοδύναμα, από τις γωνίες \(\theta \) και \(\phi \).

Ας βρούμε τώρα τις ιδιοτιμές και τα ιδιοδιάνυσμα του πίνακα \(S_n \).

Η εξίσωση ιδιοτιμών του πίνακα \(S_n \) γράφεται

\[\frac{\hbar}{2} \begin{pmatrix} \cos \theta & \sin \theta \exp(-i\phi) \\ \sin \theta \exp(i\phi) & -\cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \]

\[\begin{pmatrix} \cos \theta & \sin \theta \exp(-i\phi) \\ \sin \theta \exp(i\phi) & -\cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{2\lambda}{\hbar} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \]

\[\begin{pmatrix} \cos \theta - \frac{2\lambda}{\hbar} & \sin \theta \exp(-i\phi) \\ \sin \theta \exp(i\phi) & -\cos \theta - \frac{2\lambda}{\hbar} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \] (9)

Πρέπει \(\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \), διαφορετικά το διάνυσμα \(\begin{pmatrix} x \\ y \end{pmatrix} \) είναι γραμμικά εξαρτημένο και επομένως δεν μπορεί να είναι ιδιοδιάνυσμα.

Έτσι, η ορίζουσα του ομογενούς συστήματος (9) πρέπει να είναι μηδέν, δηλαδή

\[\begin{vmatrix} \cos \theta - \frac{2\lambda}{\hbar} & \sin \theta \exp(-i\phi) \\ \sin \theta \exp(i\phi) & -\cos \theta - \frac{2\lambda}{\hbar} \end{vmatrix} = 0 \Rightarrow \left(\cos \theta - \frac{2\lambda}{\hbar} \right) \left(-\cos \theta - \frac{2\lambda}{\hbar} \right) - \sin^2 \theta = 0 \Rightarrow \]

\[- \left(\cos \theta - \frac{2\lambda}{\hbar} \right) \left(\cos \theta + \frac{2\lambda}{\hbar} \right) - \sin^2 \theta = 0 \Rightarrow \left(\cos \theta + \frac{2\lambda}{\hbar} \right) \left(\cos \theta - \frac{2\lambda}{\hbar} \right) + \sin^2 \theta = 0 \Rightarrow \]

\[\cos^2 \theta - \left(\frac{2\lambda}{\hbar} \right)^2 + \sin^2 \theta = 0 \Rightarrow 1 - \left(\frac{2\lambda}{\hbar} \right)^2 = 0 \Rightarrow \frac{2\lambda}{\hbar} = \pm 1 \Rightarrow \lambda = \pm \frac{\hbar}{2} \]

Δηλαδή, οι ιδιοτιμές του πίνακα \(S_n \), επομένως και του αντίστοιχου τελεστή \(\hat{S}_n \) είναι \(\pm \frac{\hbar}{2} \). Αυτό σημαίνει ότι η προβολή του στις στις τυχαί \(\hat{S}_z \) μπορεί να έχει δύο τιμές, \(\frac{\hbar}{2} \) και \(-\frac{\hbar}{2} \), όπως στους άξονες \(x,y,z \).

Ας βρούμε τώρα τα ιδιοδιάνυσμα.

Για \(\lambda = \frac{\hbar}{2} \), το σύστημα (9) γράφεται
\[
\begin{align*}
\begin{pmatrix}
\cos \theta - 1 & \sin \theta \exp(-i \phi) \\
\sin \theta \exp(i \phi) & -\cos \theta - 1
\end{pmatrix}
\begin{pmatrix} x \\ y \end{pmatrix} = 0 \Rightarrow
\begin{pmatrix}
\cos \theta - 1 & \sin \theta \exp(-i \phi) \\
\sin \theta \exp(i \phi) & -\cos \theta - 1
\end{pmatrix}
\begin{pmatrix} x + \sin \theta \exp(-i \phi) y \\ \sin \theta \exp(i \phi) x - (\cos \theta + 1) y \end{pmatrix} = 0 \Rightarrow
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
(\cos \theta - 1) x + \sin \theta \exp(-i \phi) y = 0 \\
\sin \theta \exp(i \phi) x - (\cos \theta + 1) y = 0
\end{cases}
\end{align*}
\] (10)

Η ορίζουσα του ομογενούς συστήματος (10) είναι μηδέν, οπότε οι δύο εξισώσεις είναι γραμμικά εξαρτημένες. Η πρώτη εξίσωση μάς δίνει

\[
(\cos \theta - 1) x + \sin \theta \exp(-i \phi) y = 0 \Rightarrow y = \frac{1 - \cos \theta}{\sin \theta} \exp(i \phi) x
\] (11)

Αν χρησιμοποιήσουμε τις γνωστές τριγωνομετρικές ταυτότητες

\[
\cos \theta = 1 - 2 \sin^2 \frac{\theta}{2} \text{ και } \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}
\]

η (11) γράφεται

\[
y = \frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \exp(i \phi) x \Rightarrow y = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \exp(i \phi) x
\] (12)

Σημειώσεις
1. Για να γράψουμε τη (11) έχουμε σωστή θεωρήσει ότι \(\sin \theta \neq 0\), δηλαδή \(\theta \neq 0, \pi\). Θεμελιώσουμε ότι \(\theta \in [0, \pi]\). Θα δούμε, ωστόσο, ότι τα ιδιοδιανύσματα που θα βρουμε καλύπτουν και τις περιπτώσεις όπου \(\theta = 0 \text{ ή } \pi\).
2. Τριγωνομετρικές ταυτότητες

Εκφράζουμε από τη σχέση

\[
\cos(a + b) = \cos a \cos b - \sin a \sin b
\] (13)

Για \(b = -a\), η (13) μάς δίνει

\[
\cos \left(a + (-a) \right) = \cos a \cos(-a) - \sin a \sin(-a) = \cos^2 a + \sin^2 a = 1
\]

Δηλαδή \(\cos 0 = 1\), όπως πρέπει. Ο πρώτος υπάρχει το μείον στο δεύτερο μέλος.

Για \(a = b\), η (13) μάς δίνει

\[
\cos 2a = \cos^2 a - \sin^2 a
\]

Επίσης

\[
\sin^2 a + \cos^2 a = 1 \Rightarrow \cos^2 a = 1 - \sin^2 a
\]

Επομένως

\[
\cos 2a = 1 - 2 \sin^2 a
\]

Για \(2a = \theta \Rightarrow a = \frac{\theta}{2}\), η τελευταία σχέση γράφεται

\[
\cos \frac{\theta}{2} = 1 - 2 \sin^2 \frac{\theta}{2}
\] (14)

Επίσης

\[
\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} = 1 \Rightarrow \sin^2 \frac{\theta}{2} = 1 - \cos^2 \frac{\theta}{2}
\]

Αν αντικαταστήσουμε στη (14), παίρνουμε
\[
\cos \theta = 2\cos^2 \frac{\theta}{2} - 1 \quad (15)
\]
Από τη (14), μπορούμε να εκφράσουμε την παράσταση \(1 - \cos \theta \) συναρτήσει του ημιτόνου της γωνίας \(\frac{\theta}{2} \), ενώ από τη (15) μπορούμε να εκφράσουμε την παράσταση \(1 + \cos \theta \) συναρτήσει του ημιτόνου της γωνίας \(\frac{\theta}{2} \).

Επίσης, από τη σχέση

\[
\sin (a + b) = \sin a \cos b + \cos a \sin b \quad (16)
\]

για \(a = b \) παίρνουμε

\[
\sin 2a = 2\sin a \cos a
\]

Για \(2a = \theta \Rightarrow a = \frac{\theta}{2} \), η τελευταία σχέση γράφεται

\[
\sin \theta = 2\sin \frac{\theta}{2} \cos \frac{\theta}{2} \quad (17)
\]

Όπως και για τη σχέση (13), μπορούμε να αλέξουμε το πρώτο μέλος της (17) για \(b = -a \). Πρόκειται, για \(b = -a \), η (16) μάς δίνει

\[
\sin 0 = \sin a \cos a - \cos a \sin a = 0, \text{ όπως πρέπει.}
\]

3. Από τη δεύτερη εξίσωση του ομογενούς συστήματος (10),

\[
\sin \theta \exp (i\phi) x - (\cos \theta + 1) y = 0,
\]

με τη βοήθεια των (15) και (17) παίρνουμε

\[
2\sin \frac{\theta}{2} \cos \frac{\theta}{2} \exp (i\phi) x - 2\cos \frac{\theta}{2} y = 0 \Rightarrow \sin \frac{\theta}{2} \exp (i\phi) x - \cos \frac{\theta}{2} y = 0 \Rightarrow
\]

\[
\Rightarrow y = \frac{\sin \frac{\theta}{2} \exp (i\phi) x}{\cos \frac{\theta}{2}}
\]

που είναι η σχέση (12).

Από τη σχέση (12), το ιδιοδιάνυσμα του πίνακα \(S_n \) με ιδιοτιμή \(\frac{h}{2} \) γράφεται

\[
\begin{pmatrix}
\theta \\
\sin \frac{\theta}{2} \exp (i\phi) x \\
\cos \frac{\theta}{2}
\end{pmatrix}
\]

Από τη συνθήκη κανονικοποίησης \(\theta \) πάρουμε

\[
1 = |x|^2 + \left| \frac{\sin \frac{\theta}{2} \exp (i\phi) x}{\cos \frac{\theta}{2}} \right|^2 = \left(\frac{\sin^2 \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}} \right) |x|^2 \approx \frac{1}{\cos^2 \frac{\theta}{2}} |x|^2
\]

Δηλαδή

35

16/11/2017
\[|x| = \left| \cos \frac{\theta}{2} \right| = \cos \frac{\theta}{2} \]

Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων,
\[x = \cos \frac{\theta}{2} \]

Ετσι, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_n \) με ιδιοτιμή \(\frac{\hbar}{2} \) γράφεται

\[
\begin{pmatrix}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \\
\cos \theta \frac{2}{2} \exp(i\phi) \\
\sin \theta \frac{2}{2} \exp(i\phi)
\end{pmatrix}
= \begin{pmatrix}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \exp(i\phi)
\end{pmatrix}
\]

Το προηγούμενο κανονικοποιημένο ιδιοδιάνυσμα αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \(\hat{S}^z \) και \(\hat{S}_z \), την ιδιοκατάσταση του τελεστή \(\hat{S}_x \) με ιδιοτιμή \(\frac{\hbar}{2} \) (σπιν-πάνω στον άξονα \(n \)).

Δηλαδή

\[|n; \uparrow\rangle \rightarrow \begin{pmatrix}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \exp(i\phi)
\end{pmatrix} \quad (18) \]

Εξάλλου, επειδή

\[
\begin{pmatrix}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \exp(i\phi)
\end{pmatrix} = \cos \frac{\theta}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sin \frac{\theta}{2} \exp(i\phi) \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

και

\[|z; \uparrow\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |z; \downarrow\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \]

παίρνουμε

\[|n; \uparrow\rangle = \cos \frac{\theta}{2} |z; \uparrow\rangle + \sin \frac{\theta}{2} \exp(i\phi) |z; \downarrow\rangle \quad (19) \]

Ας βρούμε τώρα το άλλο ιδιοδιάνυσμα του πίνακα \(S_n \).

Για \(\lambda = -\frac{\hbar}{2} \), το σύστημα (9) γράφεται
Η ορίζουσα του ομογενούς συστήματος (20) είναι μηδέν, επομένως οι δύο εξισώσεις είναι γραμμικά εξαρτημένες. Η πρώτη εξίσωση μάς δίνει

\[y = -\frac{1 + \cos \theta}{\sin \theta} \exp(i\phi) x \quad (21) \]

Με τη βοήθεια των σχέσεων (15) και (17), η (21) γράφεται

\[y = -\frac{2 \cos^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \exp(i\phi) x \Rightarrow y = -\frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \exp(i\phi) x \]

Επομένως, το (μη κανονικοποιημένο) ιδιοδιάνυσμα του πίνακα \(S_n \) με ιδιοτιμή \(-\frac{\hbar}{2} \) γράφεται

\[
\begin{pmatrix}
 x \\
 \cos \frac{\theta}{2} \exp(i\phi) x \\
 -\frac{\sin \theta}{2} \exp(i\phi) x
\end{pmatrix}
\]

Από τη συνθήκη κανονικοποίησης θα πάρουμε

\[1 = |x|^2 + \cos \frac{\theta}{2} \exp(i\phi) x \left| \cos \frac{\theta}{2} \exp(i\phi) x \right|^2 = 1 + \frac{\cos^2 \frac{\theta}{2}}{\sin^2 \frac{\theta}{2}} |x|^2 \Rightarrow |x|^2 = |x| = \sin \frac{\theta}{2} \]

Επιλέγουμε, λαμβάνοντας υπόψη τη συμμετρία φάσης των κβαντικών καταστάσεων,

\[x = \sin \frac{\theta}{2} \]

Έτσι, το κανονικοποιημένο ιδιοδιάνυσμα του πίνακα \(S_n \) με ιδιοτιμή \(-\frac{\hbar}{2} \) γράφεται

\[
\begin{pmatrix}
 \sin \frac{\theta}{2} \\
 \cos \frac{\theta}{2} \exp(i\phi) \sin \frac{\theta}{2} \\
 -\frac{\sin \theta}{2} \exp(i\phi) \sin \frac{\theta}{2}
\end{pmatrix} = \begin{pmatrix}
 \sin \frac{\theta}{2} \\
 \cos \frac{\theta}{2} \exp(i\phi) \\
 -\frac{\sin \theta}{2} \exp(i\phi)
\end{pmatrix}
\]
Το προηγούμενο κανονικοποιημένο ιδιοδιάνυσμα αναπαριστά, στη βάση των κοινών ιδιοκαταστάσεων των τελεστών \hat{S}^2 και \hat{S}_z, την ιδιοκατάσταση του τελεστή \hat{S}_n με ιδιοτιμή $-\frac{\hbar}{2}$ (σπιν-κάτω στον άξονα n). Δηλαδή

$$|n;\downarrow\rangle \rightarrow \begin{pmatrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2}\exp(i\phi) \end{pmatrix}$$ (22)

Εξ' άλλου, επειδή

$$\begin{pmatrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2}\exp(i\phi) \end{pmatrix} = \begin{pmatrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2}\exp(i\phi) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

και

$$|z;\uparrow\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |z;\downarrow\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

παίρνουμε

$$|n;\downarrow\rangle = \sin\frac{\theta}{2}|z;\uparrow\rangle - \cos\frac{\theta}{2}\exp(i\phi)|z;\downarrow\rangle$$ (23)

Ο τελεστής \hat{S}_n είναι ερμιτιανός, επομένως οι ιδιοκαταστάσεις του, $|n;\uparrow\rangle$ και $|n;\downarrow\rangle$, πρέπει να είναι ορθογώνιες. Πράγματι, από τις (18) και (22) παίρνουμε

$$\langle n;\uparrow|n;\downarrow\rangle = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2}\exp(-i\phi) \\ -\sin\frac{\theta}{2}\exp(i\phi) & -\cos\frac{\theta}{2}\exp(i\phi) \end{pmatrix}$$

$$= \cos\frac{\theta}{2}\sin\frac{\theta}{2} - \sin\frac{\theta}{2}\exp(-i\phi)\cos\frac{\theta}{2}\exp(i\phi) = 0$$

Δηλαδή

$$\langle n;\uparrow|n;\downarrow\rangle = 0$$ (24)

Σημείωση

Όπως εξηγήσαμε στην ενότητα 4, για να υπολογίσουμε το εσωτερικό γνόμημα δύο καταστάσεων, μπορούμε να χρησιμοποιήσουμε τους πίνακες-στήλες που αναπαριστούν τις συγκεκριμένες καταστάσεις σε οποιοδήποτε βάση μάς βοηθεί.

Εναλλακτικά, μπορούμε να υπολογίσουμε το εσωτερικό γνόμημα $\langle n;\uparrow|n;\downarrow\rangle$ χρησιμοποιώντας τις σχέσεις (19) και (23).

Πράγματι, απο τη (19) βλέπουμε ότι $\langle n;\uparrow| = \cos\frac{\theta}{2}\langle z;\uparrow| + \sin\frac{\theta}{2}\exp(-i\phi)\langle z;\downarrow|$
Επομένως
\[
\langle n; \uparrow | n; \downarrow \rangle = \left(\cos \frac{\theta}{2} (z; \uparrow) + \sin \frac{\theta}{2} \exp(-i\phi) (z; \downarrow) \right) \left(\sin \frac{\theta}{2} (z; \uparrow) - \cos \frac{\theta}{2} \exp(i\phi) (z; \downarrow) \right) = \\
\cos \frac{\theta}{2} \sin \frac{\theta}{2} \exp(-i\phi) \cos \frac{\theta}{2} \exp(i\phi) = 0
\]

όπου χρησιμοποιήσαμε το γεγονός ότι το σύνολο \(\{|z; \uparrow\}, |z; \downarrow\} \) είναι ορθοκανονικό.

Οπως τα σύνολα \(\{|x; \uparrow\}, |x; \downarrow\}, \{|y; \uparrow\}, |y; \downarrow\}, \{|z; \uparrow\}, |z; \downarrow\} \), έτσι και το σύνολο \(\{|n; \uparrow\}, |n; \downarrow\} \) αποτελεί ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν-\(\frac{1}{2} \), και μπορούμε να το χρησιμοποιήσουμε για να αναπαραστήσουμε τους τελεστές και τις καταστάσεις του σπιν.

Θα χρησιμοποιήσουμε τώρα τις σχέσεις (19) και (23) για να δούμε αν από τη βάση \(\{|n; \uparrow\}, |n; \downarrow\} \) μπορούμε, με κατάλληλη επιλογή των γωνιών \(\theta \) και \(\phi \), να πάρουμε τις βάσεις \(\{|x; \uparrow\}, |x; \downarrow\}, \{|y; \uparrow\}, |y; \downarrow\}, \{|z; \uparrow\}, |z; \downarrow\} \).

ι) \(\theta = 0 \)

Οι σχέσεις (5) – (7) μάς δίνουν \(n_x = n_y = 0 \) και \(n_z = 1 \), οπότε από τη (2) παίρνουμε \(\hat{S}_z = \hat{S}_z \). Σε αυτή την περίπτωση, ο τελεστής \(\hat{S}_z \) είναι ο τελεστής \(\hat{S}_z \).

Οι (19) και (23) μάς δίνουν, αντίστοιχα,
\[
\langle n; \uparrow \rangle = |z; \uparrow\rangle \\
\langle n; \downarrow \rangle = -\exp(i\phi)|z; \downarrow\rangle = \exp(i(\pi + \phi))|z; \downarrow\rangle
\]

Η φάση \(\exp(i(\pi + \phi)) \) είναι ανεπιθύμητη γιατί εξαρτάται από την αζιμουθιακή γωνία \(\phi \). Μπορούμε να ξεπεράσουμε αυτό το πρόβλημα, αν πολλαπλασιάσουμε την κατάσταση \(|n; \downarrow\rangle \) με τη φάση \(\exp(-i(\pi + \phi)) \). Τότε, από την (23) παίρνουμε
\[
\exp(-i(\pi + \phi))|n; \downarrow\rangle = \exp(-i(\pi + \phi))\sin \frac{\theta}{2} |z; \uparrow\rangle - \exp(-i(\pi + \phi))\cos \frac{\theta}{2} \exp(i\phi)|z; \downarrow\rangle = \\
-\exp(-i\phi)\sin \frac{\theta}{2} |z; \uparrow\rangle + \cos \frac{\theta}{2} |z; \downarrow\rangle
\]

Δηλαδή
\[
\exp(-i(\pi + \phi))|n; \downarrow\rangle = -\exp(-i\phi)\sin \frac{\theta}{2} |z; \uparrow\rangle + \cos \frac{\theta}{2} |z; \downarrow\rangle \quad (25)
\]

Από την (25), βλέπουμε ότι για \(\theta = 0 \), η κατάσταση \(\exp(-i(\pi + \phi))|n; \downarrow\rangle \) μάς δίνει την επιθυμητή κατάσταση \(|z; \downarrow\rangle \).
Η κατάσταση $\exp(-i(\pi + \phi))|n;\downarrow\rangle$ είναι επίσης ιδιοκατάσταση του τελεστή \hat{S}_n με ιδιοτιμή $-\hbar$, είναι κανονικοποιημένη, αφού

\[
\frac{\|\exp(-i(\pi + \phi))|n;\downarrow\rangle\|}{\|\exp(-i(\pi + \phi))|n;\downarrow\rangle\|} = 1,
\]
και είναι ορθογώνια στην κατάσταση $\langle n;\uparrow\rangle$, αφού

\[
\langle n;\uparrow|\exp(-i(\pi + \phi))|n;\downarrow\rangle = \exp(-i(\pi + \phi))\langle n;\uparrow|n;\downarrow\rangle = 0.
\]

Επομένως, αντί για τις καταστάσεις $|n;\uparrow\rangle$ και $|n;\downarrow\rangle$, μπορούμε να επιλέξουμε τις καταστάσεις $|n;\uparrow\rangle$ και $\exp(-i(\pi + \phi))|n;\downarrow\rangle$.

Ωστόσο, η προηγούμενη παθογένεια δεν εξαφανίζεται, αφού για $\theta = \pi$ η (25) μάς δίνει

\[
\exp(-i(\pi + \phi))|n;\downarrow\rangle = -\exp(-i\phi)|z;\uparrow\rangle = \exp(i(\pi - \phi))|z;\uparrow\rangle.
\]

Ως αποτέλεσμα, μπορούμε να επιλέξουμε την επιθυμητή κατάσταση $|z;\uparrow\rangle$ πολλαπλασιασμένη με μια ανεπιθυμητή φάση που εξαρτάται από τη γωνία ϕ.

ii) $\theta = \frac{\pi}{2}$, $\phi = 0$

Οι σχέσεις (5) – (7) μάς δίνουν $n_z = 1$, $n_x = n_y = 0$, οπότε από τη (2) παίρνουμε $\hat{S}_n = \hat{S}_x$. Σε αυτή την περίπτωση, ο τελεστής \hat{S}_n είναι ο τελεστής \hat{S}_x.

Οι (19) και (23) μάς δίνουν, αντίστοιχα,

\[
|n;\uparrow\rangle = \cos\frac{\pi}{4}|z;\uparrow\rangle + \sin\frac{\pi}{4}\exp(i\theta)|z;\downarrow\rangle = \frac{1}{\sqrt{2}}|z;\uparrow\rangle + \frac{1}{\sqrt{2}}|z;\downarrow\rangle
\]

\[
|n;\downarrow\rangle = \sin\frac{\pi}{4}|z;\uparrow\rangle - \cos\frac{\pi}{4}\exp(i\theta)|z;\downarrow\rangle = \frac{1}{\sqrt{2}}|z;\uparrow\rangle - \frac{1}{\sqrt{2}}|z;\downarrow\rangle
\]

Ωμος

\[
\frac{1}{\sqrt{2}}|z;\uparrow\rangle + \frac{1}{\sqrt{2}}|z;\downarrow\rangle = |x;\uparrow\rangle
\]
και

\[
\frac{1}{\sqrt{2}}|z;\uparrow\rangle - \frac{1}{\sqrt{2}}|z;\downarrow\rangle = |x;\downarrow\rangle
\]

Θυμηθείτε ότι, στη βάση $\{|z;\uparrow\rangle,|z;\downarrow\rangle\}$, η κατάσταση $|x;\uparrow\rangle$ αναπαρίσταται από τον σπίνορα $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ και η κατάσταση $|x;\downarrow\rangle$ από τον σπίνορα $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

40

16/11/2017
Επομένως
\[|n; \uparrow \rangle = |x; \uparrow \rangle \]
\[|n; \downarrow \rangle = |x; \downarrow \rangle \]

iii) \(\theta = \frac{\pi}{2}, \ \varphi = \frac{\pi}{2} \)

Οι σχέσεις (5) – (7) μάς δίνουν \(n_x = 0, \ n_y = 1, \ n_z = 0 \), οπότε από τη (2) παίρνουμε
\(\hat{S}_x = \hat{S}_z \). Σε αυτή την περίπτωση ο τελεστής \(\hat{S}_x \) είναι ο τελεστής \(\hat{S}_z \).

Οι (19) και (23) μάς δίνουν, αντίστοιχα,
\[|n; \uparrow \rangle = \cos \left(\frac{\pi}{4} z \right) |z; \uparrow \rangle + \sin \left(\frac{\pi}{4} \right) \exp \left(i \frac{\pi}{2} \right) |z; \downarrow \rangle = \frac{1}{\sqrt{2}} |z; \uparrow \rangle + i \frac{1}{\sqrt{2}} |z; \downarrow \rangle \]
\[|n; \downarrow \rangle = \sin \left(\frac{\pi}{4} z \right) |z; \uparrow \rangle - \cos \left(\frac{\pi}{4} \right) \exp \left(i \frac{\pi}{2} \right) |z; \downarrow \rangle = \frac{1}{\sqrt{2}} |z; \uparrow \rangle - i \frac{1}{\sqrt{2}} |z; \downarrow \rangle \]

Θυμηθείτε ότι, στη βάση \(\{|z; \uparrow \rangle, |z; \downarrow \rangle\} \), η κατάσταση \(|y; \uparrow \rangle \) αναπαρίσταται από τον σπίνορα \(\frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ i \end{array} \right) \) και η κατάσταση \(|y; \downarrow \rangle \) από τον σπίνορα \(\frac{1}{\sqrt{2}} \left(\begin{array}{c} -i \\ 1 \end{array} \right) \).

Επομένως
\[|n; \uparrow \rangle = |y; \uparrow \rangle \]
\[|n; \downarrow \rangle = |y; \downarrow \rangle \]

iv) Τέλος, για \(\theta = \pi \), οι σχέσεις (5) – (7) μάς δίνουν \(n_x = n_y = 0 \) και \(n_z = -1 \). Οπότε από τη (2) παίρνουμε \(\hat{S}_x = -\hat{S}_z \). Τότε, οι (19) και (23) μάς δίνουν, αντίστοιχα,
\[|n; \uparrow \rangle = \exp (i\phi) |z; \downarrow \rangle \]
\[|n; \downarrow \rangle = |z; \uparrow \rangle \]

Η εξαρτώμενη από τη γωνία \(\phi \) ανεπιθύμητη φάση εμφανίζεται ξανά, αυτή τη φορά στην κατάσταση \(|n; \uparrow \rangle \).
7. Ασκήσεις (συνέχεια)

7) Η μέτρηση της προβολής του σπιντήρ υπό συνθήκες που

προβλέπεται στην εικόνα 4 και μάς δίνει αποτέλεσμα \(\frac{\hbar}{2} \). Στη συνέχεια, θέλουμε να μετρήσουμε το σπιντήρ του ηλεκτρονίου στον άξονα που βρίσκεται κατά επίπεδο χαμηλό και συχνότερα γωνία \(\phi \) με τον άξονα \(x \) (αξιοθαυμαστικές γωνίες). Ποια είναι η πιθανότητα να είναι \(-\frac{\hbar}{2} \) ή \(+\frac{\hbar}{2} \)?

Απάντηση

Αμέσως μετά τη μέτρηση, η κατάσταση του σημείου του ηλεκτρονίου είναι η ιδιοκατάσταση του τελεστή \(\hat{S}_z \) με ιδιοτιμή \(\frac{\hbar}{2} \), δηλαδή η κατάσταση \(|x; \uparrow \rangle \). Ο κανονικοποιημένος σπίνορας που αναπαριστά, στη βάση \(\{|z; \uparrow\rangle, |z; \downarrow\rangle\} \), την κατάσταση \(|x; \uparrow \rangle \) είναι ο σπίνορας \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

Η προβολή του σπιντήρ του ισχυρού ορίζουν την πολική και την αζιμουθιακή γωνία, \(\theta \) και \(\phi \) αντίστοιχα, αναπαριστάται στην βάση \(\{|z; \uparrow\rangle, |z; \downarrow\rangle\} \), από τον πίνακα

\[
S_n = \frac{\hbar}{2} \begin{pmatrix}
\cos \theta & \sin \theta \exp(-i\phi) \\
\sin \theta \exp(i\phi) & -\cos \theta
\end{pmatrix}
\]

Οι ιδιοτιμές του πίνακα \(S_n \) είναι \(\pm \frac{\hbar}{2} \) και τα ιδιοδιανύσματά του είναι, αντίστοιχα,

\[
\begin{pmatrix}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \exp(i\phi)
\end{pmatrix}
\] \(\text{και} \)

\[
\begin{pmatrix}
\sin \frac{\theta}{2} \\
-\cos \frac{\theta}{2} \exp(i\phi)
\end{pmatrix}
\]

Τα δύο αυτά ιδιοδιανύσματα αναπαριστούν τις ιδιοκατάστασες ιδιοτιμής \(\pm \frac{\hbar}{2} \), αντίστοιχα, του τελεστή \(\hat{S}_z \).

Ο τελεστής της προβολής του σημείου του άξονα που βρίσκεται κατά επίπεδο χαμηλό και συχνότερα γωνία \(\phi \) με τον άξονα \(x \) προκύπτει αν θέσουμε \(\theta = \frac{\pi}{2} \). Τότε, το ιδιοδιάνυσμα ιδιοτιμής \(-\frac{\hbar}{2} \) γράφεται \(\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \)

\[
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -\exp(i\phi) \end{pmatrix}
\]

Αυτός είναι ο σπίνορας που αναπαριστά την ιδιοκατάσταση ιδιοτιμής \(-\frac{\hbar}{2} \) της προβολής του σημείου του άξονα που θέλουμε να μετρήσουμε το σημείο του ηλεκτρονίου.
Το πλάτος της ζητούμενης πιθανότητας είναι, επομένως,

\[
\left(\frac{1}{\sqrt{2}} \left(-\exp(i\phi) \right) \right)^* \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right) = \frac{1}{2} \left(1 - \exp(-i\phi) \right) \left(\frac{1}{1} \right) = \frac{1}{2} \left(1 - \exp(-i\phi) \right),
\]
και η ζητούμενη πιθανότητα είναι

\[
\left| \frac{1}{2} \left(1 - \exp(-i\phi) \right) \right|^2 = \frac{1}{2} \left(1 - \exp(-i\phi) \right) \frac{1}{2} \left(1 - \exp(i\phi) \right) = \frac{1}{4} \left(1 - \exp(i\phi) - \exp(-i\phi) + 1 \right) = \frac{1}{2} \left(1 - \cos \phi \right)
\]

Παρατηρήσεις
i) Αν \(\phi = 0 \), η πιθανότητα μηδενίζεται. Αυτό είναι αναμενόμενο, αφού τότε ο άξονας είναι ο άξονας \(x \) και ο σπίνορας (1) γράφεται

\[
\frac{1}{\sqrt{2}} \left(-\exp(i0) \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)
\]

Αυτός όμως είναι ο σπίνορας που αναπαριστά την κατάσταση \(|x, \downarrow \rangle \), η οποία είναι κάθετη στην κατάσταση του σπιν, \(|x, \uparrow \rangle \), δηλαδή \(\langle x, \downarrow | x, \uparrow \rangle = 0 \) και η πιθανότητα μηδενίζεται.

ii) Αν \(\phi = \pi \), ο άξονας στον οποίο μετράμε την προβολή του σπιν είναι πάλι ο άξονας \(x \), αλλά ανάποδα (με αντίθετη κατεύθυνση). Τότε, ο σπίνορας (1) γράφεται

\[
\frac{1}{\sqrt{2}} \left(-\exp(i\pi) \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{1} \right)
\]

Αυτός είναι ο σπίνορας που αναπαριστά την κατάσταση \(|x, \uparrow \rangle \), που είναι η κατάσταση του σπιν, επομένως η πιθανότητα σε αυτήν την περίπτωση είναι 1, αφού

\[
\left| \langle x, \uparrow | x, \uparrow \rangle \right|^2 = 1.
\]

8) Στη βάση \(\{ |z, \uparrow \rangle, |z, \downarrow \rangle \} \) η κατάσταση του σπιν ενός ηλεκτρονίου αναπαρίσταται από τον σπίνορα \(\frac{1}{\sqrt{5}} \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \). Αν μετρήσουμε τον τελεστή

\[
\hat{T} = \frac{1}{\sqrt{5}} \left(3 \hat{S}_x + 4 \hat{S}_y \right),
\]
ποια είναι τα πιθανά αποτελέσματα της μέτρησης και ποιες οι αντίστοιχες πιθανότητες?

Απάντηση
Ο σπίνορας \(\frac{1}{\sqrt{5}} \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \) είναι κανονικοποιημένος, αφού

\[
\left\langle \begin{array}{c} 2 \\ 1 \end{array} \right| \hat{T} \left| \begin{array}{c} 2 \\ 1 \end{array} \right\rangle = \frac{1}{\sqrt{5}} \left(3 \cdot 2 - 4 \cdot 1 \right) = 0
\]
\[
\left(\frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right)^* \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{5} (4+1) = 1
\]

Στη βάση \(\{ |z; \hat{T} \rangle, |z; \hat{\Psi} \rangle \} \), ο τελεστής \(\hat{S}_z \) αναπαρίσταται από τον πίνακα
\[
S_z = \frac{\mathbf{h}}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]
και ο τελεστής \(\hat{S}_y \) αναπαρίσταται από τον πίνακα \(S_y = \frac{\mathbf{h}}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \).

Έτσι, ο τελεστής \(\hat{T} \) αναπαρίσταται από τον πίνακα
\[
T = \frac{1}{5} \left(\frac{3}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \frac{4}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right) = \frac{\mathbf{h}}{10} \begin{pmatrix} 0 & 3-4i \\ 3+4i & 0 \end{pmatrix},
\]
δηλαδή
\[
T = \frac{\mathbf{h}}{10} \begin{pmatrix} 0 & 3-4i \\ 3+4i & 0 \end{pmatrix} \quad (1)
\]

Τα πιθανά αποτελέσματα μιας μέτρησης του τελεστή \(\hat{T} \) είναι οι ιδιοτιμές του, που ταυτίζονται με τις ιδιοτιμές του πίνακα \(T \) που αναπαριστά τον τελεστή στη συγκεκριμένη βάση.

Το χαρακτηριστικό πολυώνυμο του πίνακα \(T \) είναι
\[
\det (T - \lambda I) = \begin{vmatrix} -\lambda & \frac{\mathbf{h}}{10} (3-4i) \\ \frac{\mathbf{h}}{10} (3+4i) & -\lambda \end{vmatrix} = \lambda^2 - \left(\frac{\mathbf{h}}{10} \right)^2 (3+4i)(3-4i) = \lambda^2 - \left(\frac{\mathbf{h}}{10} \right)^2 (9+16) =
\]
\[
= \lambda^2 - \frac{h^2}{25} = \lambda^2 - \left(\frac{h}{2} \right)^2
\]

Οι ιδιοτιμές του πίνακα είναι οι ρίζες του χαρακτηριστικού πολυώνυμου του, δηλαδή
\[
\lambda_{1,2} = \pm \frac{h}{2}
\]

Για \(\lambda = \frac{h}{2} \), η εξίσωση ιδιοτιμών του πίνακα \(T \) γράφεται
\[
\begin{pmatrix} \frac{\mathbf{h}}{2} & \frac{\mathbf{h}}{10} (3-4i) \\ \frac{\mathbf{h}}{10} (3+4i) & -\frac{\mathbf{h}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & \frac{1}{5} (3-4i) \\ \frac{1}{5} (3+4i) & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
\[
\Rightarrow \begin{pmatrix} -x + \frac{1}{5} (3-4i) y \\ \frac{1}{5} (3+4i) x - y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Επομένως
\[
-x + \frac{1}{5} (3-4i) y = 0 \quad (2)
\]
\[\frac{1}{5} (3 + 4i)x - y = 0 \]
(3)

Από τη (3) παίρνουμε

\[y = \frac{1}{5} (3 + 4i)x \]

Αν αντικαταστήσουμε στη (2), θα πάρουμε

\[-x + \frac{1}{5} (3 - 4i) \frac{1}{5} (3 + 4i)x = 0 \Rightarrow \left(-1 + \frac{1}{25} (9 + 16) \right)x = 0 \Rightarrow 0 = 0 \]

Δηλαδή, οι (2) και (3) είναι γραμμικά εξαρτημένες, όπως πρέπει για να υπάρχει (μη τετριμμένο) ιδιοδιάνυσμα.

Το μη κανονικοποιημένο ιδιοδιάνυσμα είναι το

\[
\begin{pmatrix}
 x \\
 \frac{1}{5} (3 + 4i)x
\end{pmatrix} = x \begin{pmatrix}
 1 \\
 \frac{1}{5} (3 + 4i)
\end{pmatrix}
\]

Με κανονικοποίηση παίρνουμε

\[1 = |x|^2 \left(1 - \frac{1}{5} (3 - 4i) \frac{1}{5} (3 + 4i)\right) = |x|^2 \left(1 + \frac{1}{25} (9 + 16)\right) = 2|x|^2 \]

Δηλαδή

\[2|x|^2 = 1 \Rightarrow |x| = \frac{1}{\sqrt{2}} \]

Αν παραλείψουμε τη σταθερή φάση, \(x = \frac{1}{\sqrt{2}} \).

Έτσι, το κανονικοποιημένο ιδιοδιάνυσμα ιδιοτιμής \(\frac{\hbar}{2} \) του πίνακα \(T \) είναι το

\[\frac{1}{\sqrt{2}} \begin{pmatrix}
 1 \\
 \frac{1}{5} (3 + 4i)
\end{pmatrix} \]
(4)

Ο σπίνορας (4) αναπαριστά, στη βάση \[\left\{ |z; \uparrow\rangle, |z; \downarrow\rangle \right\} \], την ιδιοκατάσταση ιδιοτιμής \(\frac{\hbar}{2} \)

tου τελεστή \(\hat{T} \).

Ο σπίνορας (4) γράφεται
\[
\frac{1}{\sqrt{2}} \left(\frac{1}{5} (3 + 4i) \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{5} (3 + 4i) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) + \frac{1}{5} (3 + 4i) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \right)
\]

Ο σπίνορας \(\left(\begin{array}{c} 1 \\ 0 \end{array} \right) \) αναπαριστά την κατάσταση \(|z; \uparrow\rangle\), αφού

\[
|z; \uparrow\rangle = 1|z; \uparrow\rangle + 0|z; \downarrow\rangle
\]

Ομοίως, ο σπίνορας \(\left(\begin{array}{c} 0 \\ 1 \end{array} \right) \) αναπαριστά την κατάσταση \(|z; \downarrow\rangle\), αφού

\[
|z; \downarrow\rangle = 0|z; \uparrow\rangle + 1|z; \downarrow\rangle
\]

Επομένως, ο σπίνορας (4) αναπαριστά την κατάσταση

\[
\frac{1}{\sqrt{2}} \left(|z; \uparrow\rangle + \frac{1}{5} (3 + 4i) |z; \downarrow\rangle \right)
\]

Η (5) είναι, λοιπόν, η ιδιοκατάσταση ιδιοτιμής \(\frac{\hbar}{2} \) του τελεστή \(\hat{T} \).

Για \(\lambda_2 = -\frac{\hbar}{2} \), η εξίσωση ιδιοτιμών του πίνακα \(T \) γράφεται

\[
\begin{bmatrix}
\frac{\hbar}{2} & \frac{\hbar}{10} (3 - 4i) \\
\frac{\hbar}{10} (3 + 4i) & \frac{\hbar}{2}
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\frac{1}{5} (3 - 4i) \\
\frac{1}{5} (3 + 4i)
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

\[
\Rightarrow
\begin{bmatrix}
x + \frac{1}{5} (3 - 4i) y \\
\frac{1}{5} (3 + 4i) x + y
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

Επομένως

\(x + \frac{1}{5} (3 - 4i) y = 0 \) (6)

\(\frac{1}{5} (3 + 4i) x + y = 0 \) (7)

Από την (7) παίρνουμε

\(y = -\frac{1}{5} (3 + 4i) x \)

Αν αντικαταστήσουμε στην (6), θα πάρουμε

\[
\begin{bmatrix}
1 - \frac{1}{25} (3 - 4i)(3 + 4i)
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
= 0 \Rightarrow 0 = 0
\]

46 16/11/2017
Δηλαδή, οι (6) και (7) είναι γραμμικά εξαρτημένες, όπως πρέπει για να υπάρχει (μη τετριμμένο) ιδιοδίανυσμα.
Το μη κανονικοποιημένο ιδιοδιάνυσμα είναι το
\[
\begin{pmatrix}
 x \\
 -\frac{1}{5}(3+4i)x
\end{pmatrix}
= x
\begin{pmatrix}
 1 \\
 -\frac{1}{5}(3+4i)
\end{pmatrix}
\]
Με κανονικοποίηση παίρνουμε
\[1 = |x|^2 \left(1 + \left(-\frac{1}{5}(3-4i)\right) \left(-\frac{1}{5}(3+4i)\right)\right) = |x|^2 \left(1 + \frac{1}{25}(9+16)\right) = 2|x|^2\]
Επομένως, αν παραλείψουμε τη σταθερή φάση, \(x = \frac{1}{\sqrt{2}}\).
Το κανονικοποιημένο ιδιοδιάνυσμα ιδιοτιμής \(-\frac{\hbar}{2}\) του πίνακα \(T\) είναι το
\[\frac{1}{\sqrt{2}} \begin{pmatrix}
 1 \\
 -\frac{1}{5}(3+4i)
\end{pmatrix}\]
και αναπαριστά την κατάσταση
\[\frac{1}{\sqrt{2}} \left(|z; \uparrow\rangle - \frac{1}{5}(3+4i) |z; \downarrow\rangle \right)\]
που είναι η ιδιοκατάσταση ιδιοτιμής \(-\frac{\hbar}{2}\) του τελεστή \(\hat{T}\).

Παρατηρήστε ότι τα ιδιοδιανύσματα (4) και (8) – ισοδύναμα, οι ιδιοκαταστάσεις (5) και (9) – είναι κάθετα (κάθετες), αφού
\[
\begin{pmatrix}
 \frac{1}{\sqrt{2}} \left(-\frac{1}{5}(3+4i) \right) \\
 \frac{1}{\sqrt{2}} \left(\frac{1}{5}(3+4i) \right)
\end{pmatrix}
= \frac{1}{2} \left(\frac{1}{5} - \frac{1}{5}(3-4i) \right) \left(\frac{1}{5}(3+4i) \right)
= \frac{1}{2} \left(1 - \frac{1}{25}(9+16) \right) \left(1 + \frac{1}{25}(9+16) \right) = \frac{1}{2}(1-1) = 0
\]
Αυτό οφείλεται στο ότι ο πίνακας \(T\) – ισοδύναμα, ο τελεστής \(\hat{T}\) – είναι ερμιτιανός, όπως εύκολα μπορούμε να δούμε.
Το πλάτος της πιθανότητας η μέτρηση να δώσει αποτέλεσμα \(\frac{\hbar}{2}\) είναι το εσωτερικό γινόμενο του σπίνορα (4) – ισοδύναμα της ιδιοκατάστασης (5) – με τον σπίνορα \(\frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}\) – ισοδύναμα, με την κατάσταση \(\frac{1}{\sqrt{5}} \left(2 |z; \uparrow\rangle + |z; \downarrow\rangle \right)\), που αναπαριστά ο σπίνορας \(\frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}\).
Έτσι, λοιπόν, το πλάτος της πιθανότητας να μετρήσουμε $h/2$ ως τιμή του τελεστή \hat{T} είναι

$$\left(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \frac{1}{5}(3+4i) \end{pmatrix}\right)^{\dagger} \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ \frac{1}{5}(3-4i) \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} 2 + \frac{1}{5}(3-4i) \end{pmatrix}$$

Η αντίστοιχη πιθανότητα είναι

$$\left|\frac{1}{\sqrt{10}} \begin{pmatrix} 2 + \frac{1}{5}(3-4i) \end{pmatrix}\right|^2 = \frac{1}{10} \left(2 + \frac{1}{5}(3-4i)\right) \left(2 + \frac{1}{5}(3+4i)\right) = \frac{1}{10} \left(\frac{4}{5} + \frac{2}{5}(3-4i) + \frac{1}{25}(3-4i)(3+4i) \right) = \frac{1}{10} \left(\frac{4}{5} + \frac{2}{5}(3+4i+3-4i) + \frac{1}{25}(9+16) \right) = \frac{1}{10} \left(\frac{4}{5} + \frac{2}{5}(6+1) \right) = \frac{1}{10} \left(\frac{5 + \frac{12}{5}}{5} \right) = \frac{1}{10} \frac{37}{5} = \frac{37}{50}$$

Δηλαδή, η πιθανότητα να μετρήσουμε $h/2$ ως τιμή του τελεστή \hat{T} είναι $\frac{37}{50}$.

Με το ίδιο σκέπτικο, η πιθανότητα να μετρήσουμε την ιδιοτιμή $-\frac{h}{2}$ είναι

$$\left|\frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -\frac{1}{5}(3+4i) \end{pmatrix}\right|^2 = \frac{1}{10} \left(2 - \frac{1}{5}(3-4i)\right) \left(2 - \frac{1}{5}(3+4i)\right) = \frac{1}{10} \left(\frac{4}{5} - \frac{2}{5}(3-4i) + \frac{1}{25}(3-4i)(3+4i) \right) = \frac{1}{10} \left(\frac{4}{5} - \frac{2}{5}(3+4i+3-4i) + \frac{1}{25}(9+16) \right) = \frac{1}{10} \left(\frac{4}{5} - \frac{2}{5}(6+1) \right) = \frac{1}{10} \left(\frac{5 - \frac{2}{5}}{5} \right) = \frac{1}{10} \left(\frac{13}{5} \right) = \frac{13}{50}$$

Δηλαδή, η πιθανότητα να μετρήσουμε $-h/2$ ως τιμή του τελεστή \hat{T} είναι $\frac{13}{50}$.

Το άθροισμα των δύο πιθανοτήτων είναι

$$\frac{37}{50} + \frac{13}{50} = \frac{50}{50} = 1,$$

όπως πρέπει, αφού δεν υπάρχει άλλο αποτέλεσμα μέτρησης, παρά μόνο $h/2$ ή $-h/2$.

48

16/11/2017
9) Μια τυχαία κατάσταση του σπιν ηλεκτρονίου γράφεται, στη βάση
\[|\uparrow\rangle, |\downarrow\rangle, \quad |\psi\rangle = a |\uparrow\rangle + b |\downarrow\rangle, \]
όπου \(a, b \) μιγαδικοί αριθμοί, και
\[|a|^2 + |b|^2 = 1 \]
ώστε η κατάσταση να είναι κανονικοποιημένη.

Μετράμε το σπιν του ηλεκτρονίου πρώτα στον άξονα \(x \) και ακολούθως στον άξονα \(z \).

i) Υπολογίστε την πιθανότητα και η 1\(^{\text{a}} \) και η 2\(^{\text{a}} \) μέτρηση να δώσουν αποτέλεσμα \(\frac{\hbar}{2} \).

ii) Ποια σχέση πρέπει να έχουν οι συντελεστές \(a, b \) ώστε η πιθανότητα να μην εξαρτάται από αυτούς. Πόση είναι τότε η πιθανότητα?

Λύση

i) Θέλουμε να υπολογίσουμε την πιθανότητα του ενδεχομένου η 1\(^{\text{a}} \) μέτρηση να δώσει αποτέλεσμα \(\frac{\hbar}{2} \) και η 2\(^{\text{a}} \) μέτρηση να δώσει αποτέλεσμα \(\frac{\hbar}{2} \).

1\(^{\text{a}} \) μέτρηση

Η κατάσταση όπου το σπιν στον άξονα \(x \) είναι \(\frac{\hbar}{2} \) είναι η ιδιοκατάσταση του τελεστή \(\hat{S}_x \) με ιδιοτιμή \(\frac{\hbar}{2} \), δηλαδή η κατάσταση \(|x\uparrow\rangle \), η οποία στη βάση \(\{|\uparrow\rangle, |\downarrow\rangle\} \) γράφεται

\[|x\uparrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle) \]

Αντί να θυμάστε την προηγούμενη σχέση, μπορείτε να θυμάστε ότι το ιδιοδιάνυσμα

ιδιοτιμής \(\frac{\hbar}{2} \) του πίνακα \(S_x \) είναι το \(\frac{1}{\sqrt{2}} (1) \)

Το πλάτος της πιθανότητας η 1\(^{\text{a}} \) μέτρηση να δώσει αποτέλεσμα \(\frac{\hbar}{2} \) είναι

\[\langle x\uparrow | \psi \rangle = \frac{1}{\sqrt{2}} (\langle \uparrow | + \langle \downarrow |) (a |\uparrow\rangle + b |\downarrow\rangle) = \frac{a + b}{\sqrt{2}} \]

Δηλαδή

\[\langle x\uparrow | \psi \rangle = \frac{a + b}{\sqrt{2}} \]

Επομένως, η πιθανότητα η 1\(^{\text{a}} \) μέτρηση να δώσει αποτέλεσμα \(\frac{\hbar}{2} \) είναι
Η ζητούμενη πιθανότητα είναι το γινόμενο των δύο πιθανοτήτων, δηλαδή
\[
\text{Re} \left(ab^* \right) = 0, \quad \text{ή} \quad \frac{1}{4} \text{ή} \quad 25\%.
\]
Ας δούμε πότε συμβαίνει αυτό. Είναι
\[
a = |a| \exp (i\phi_a), \quad b = |b| \exp (i\phi_b),
\]
με \(|a|^2 + |b|^2 = 1\).
Ωστόσο
\[
\text{Re} \left(ab^* \right) = \text{Re} \left(|a||b| \exp (i(\phi_a - \phi_b)) \right) = |a||b| \cos (\phi_a - \phi_b)
\]
Δηλαδή
\[
\text{Re} \left(ab^* \right) = |a||b| \cos (\phi_a - \phi_b)
\]
Επομένως, θα πρέπει \(\text{Re} \left(ab^* \right) = 0\), και τότε η πιθανότητα γίνεται \(\frac{1}{4}\) ή 25\%.

Ας δούμε πότε συμβαίνει αυτό.

Ωστόσο
\[
|a|^2 + |b|^2 = 1
\]
Ωστόσο
\[
|a||b| \cos (\phi_a - \phi_b)
\]
Επομένως, θα πρέπει
\[
|a||b| \cos (\phi_a - \phi_b) = 0
\]
Ωστόσο
\[
|a| = 0 \Rightarrow a = 0
\]

2\text{η} μέτρηση
Θελουμε να υπολογίσουμε την πιθανότητα και η 2\text{η} μέτρηση να δώσει αποτέλεσμα \(\frac{h}{2}\). Αν το αποτέλεσμα της 1\text{ης} μέτρησης είναι \(\frac{h}{2}\), τότε μετά την 1\text{η} μέτρηση, η κατάστασή του σπιν είναι η ιδιοκατάσταση ιδιοτιμής \(\frac{h}{2}\) του τελεστή \(\hat{S}_z\), δηλαδή η κατάσταση \(x; \uparrow\) = \(\frac{1}{\sqrt{2}} \left(|z; \uparrow\rangle + |z; \downarrow\rangle \right)\), και αυτή είναι η κατάστασή του σπιν όταν γίνεται η 2\text{η} μέτρηση.
Επομένως, το πλάτος της πιθανότητας και η 2\text{η} μέτρηση να δώσει αποτέλεσμα \(\frac{h}{2}\) είναι \(\langle z; \uparrow | x; \uparrow \rangle = \frac{1}{\sqrt{2}}, \) και η αντίστοιχη πιθανότητα είναι, επομένως, \(|\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}\).
Η ζητούμενη πιθανότητα είναι το γινόμενο των δύο πιθανοτήτων, δηλαδή
\[
\frac{1}{4} \left(1 + 2 \text{Re} \left(ab^* \right) \right).
\]
ii) Για να μην εξαρτάται η προηγούμενη πιθανότητα από τους συντελεστές \(a\) και \(b\), θα πρέπει \(\text{Re} \left(ab^* \right) = 0\), και τότε η πιθανότητα γίνεται \(\frac{1}{4}\) ή 25\%.

Ας δούμε πότε συμβαίνει αυτό.

Ωστόσο
\[
|a|^2 + |b|^2 = 1
\]
Ας δούμε πότε συμβαίνει αυτό. Είναι
\[
a = |a| \exp (i\phi_a), \quad b = |b| \exp (i\phi_b),
\]
με \(|a|^2 + |b|^2 = 1\).
Ωστόσο
\[
\text{Re} \left(ab^* \right) = \text{Re} \left(|a||b| \exp (i(\phi_a - \phi_b)) \right) = |a||b| \cos (\phi_a - \phi_b)
\]
Δηλαδή
\[
\text{Re} \left(ab^* \right) = |a||b| \cos (\phi_a - \phi_b)
\]
Επομένως, θα πρέπει
\[
\text{Re} \left(ab^* \right) = 0 \Rightarrow |a| = 0 \text{ ή} |b| = 0 \text{ ή} \cos (\phi_a - \phi_b) = 0
\]
Ωστόσο
\[
|a| = 0 \Rightarrow a = 0
\]
\[|b| = 0 \Rightarrow b = 0 \]

Επειδή πρέπει \(|a|^2 + |b|^2 = 1 \), όταν ο ένας από τους δύο συντελεστές είναι μηδέν, ο άλλος είναι αναγκαστικά ένα.

Και

\[\cos(\phi_a - \phi_b) = 0 \quad \Rightarrow \quad |\phi_a - \phi_b| = (2n+1)\frac{\pi}{2}, \text{ με } n \in \mathbb{N} \]

Επομένως, η πιθανότητα είναι ανεξάρτητη από τους συντελεστές του αναπτύγματος της αρχικής κατάστασης του σπιν – δηλαδή της κατάστασης του σπιν πριν από την 1η μέτρηση – αν ο ένας από τους δύο συντελεστές είναι μηδέν ή αν η διαφορά φάσης των δύο συντελεστών είναι, κατ’ απόλυτη τιμή, \((2n+1)\frac{\pi}{2}\).

10) Κάνουμε δύο διαδοχικές μετρήσεις της προβολής του σπιν ενός ηλεκτρονίου σε δύο διαφορετικούς από τους άξονες χyz. Όπως γνωρίζουμε, οι τιμές της προβολής του σπιν σε κάθε έναν από τους άξονες είναι \(\pm \frac{\hbar}{2}\), επομένως αυτά είναι τα δύο δυνατά αποτελέσματα της κάθε μέτρησης. Ποιες είναι οι αντίστοιχες πιθανότητες για τη 2η μέτρηση;

Λύση

Μετά την 1η μέτρηση, η κατάσταση του σπιν του ηλεκτρονίου είναι μία από τις δύο ιδιοκαταστάσεις της προβολής του σπιν στον άξονα που έγινε η μέτρηση. Τότε, όπως έχουμε δείξει, οι πιθανότητες μέτρησης των δύο δυνατών τιμών της προβολής του σπιν στους δύο άλλους άξονες είναι ίσες, δηλαδή \(\frac{1}{2}\) ή 50% η κάθε μία.

Για τον ίδιο λόγο, αν κάνουμε η διαδοχικές μετρήσεις της προβολής του σπιν στους άξονες χyz, όπου κάθε δύο διαδοχικές μετρήσεις γίνονται σε διαφορετικούς άξονες, τότε οι πιθανότητες όλων των μετρήσεων πλην της 1ης είναι \(\frac{1}{2}\) ή 50% η κάθε μία!

11) Η μέτρηση της προβολής του σπιν ενός ηλεκτρονίου στον άξονα \(x\) μάς δίνει αποτέλεσμα \(\frac{-\hbar}{2}\). Στη συνέχεια μετράμε την προβολή του σπιν στην κατεύθυνση που ορίζει το διάνυσμα \(\hat{n} = (3, 0, 4)\). Ποιες είναι τα πιθανά αποτελέσματα της μέτρησης και ποιες οι αντίστοιχες πιθανότητες;

Λύση

Αμέσως μετά την 1η μέτρηση, η κατάσταση του σπιν του ηλεκτρονίου είναι η ιδιοκατάσταση του τελεστή \(\hat{S}\), με ιδιοτιμή \(\frac{-\hbar}{2}\), δηλαδή η κατάσταση \(|x; \downarrow\rangle\).
Στη βάση \(\{\hat{\mathbf{z}}; \mathbf{1}\}, \mathbf{z}; \mathbf{j}\} \), ο τελεστής \(\hat{\mathbf{S}} \) αναπαρίσταται από τον πίνακα

\[
\mathbf{S}_3 = \frac{\hbar}{2} \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix},
\]
και η κατάσταση \(\mathbf{z}; \mathbf{j} \) αναπαρίσταται από το ιδιοδιάνυσμα (σπίνορα) ιδιοτιμής \(-\frac{\hbar}{2} \) του προηγουμένου πίνακα, που είναι το \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \).

Όταν γίνεται η 2\(^{η}\) μέτρηση, η κατάσταση του σπίνου είναι η κατάσταση \(\mathbf{z}; \mathbf{j} \), που αναπαρίσταται από τον σπίνορα \(\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \).

Το μέτρο του διανύσματος \(\hat{\mathbf{n}} \) είναι

\[
\sqrt{\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}} = \sqrt{(3, 0, 4) \cdot (3, 0, 4)} = \sqrt{9 + 16} = 5
\]

Επομένως, το μοναδιαίο διάνυσμα στην κατεύθυνση που ορίζει το διάνυσμα \(\hat{\mathbf{n}} \) είναι

\[
\hat{\mathbf{n}} = \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix}
\]

Η προβολή του σπίνου στον \(\hat{\mathbf{n}} \) είναι

\[
\hat{\mathbf{S}}_n = \hat{\mathbf{n}} \cdot \hat{\mathbf{S}} = \begin{pmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \end{pmatrix} \cdot \left(\hat{\mathbf{S}}_x, \hat{\mathbf{S}}_y, \hat{\mathbf{S}}_z \right) = \frac{3}{5} \hat{\mathbf{S}}_x + \frac{4}{5} \hat{\mathbf{S}}_z = \frac{1}{5} \left(3 \hat{\mathbf{S}}_x + 4 \hat{\mathbf{S}}_z \right)
\]

Δηλαδή

\[
\hat{\mathbf{S}}_n = \frac{1}{5} \left(3 \hat{\mathbf{S}}_x + 4 \hat{\mathbf{S}}_z \right)
\] (1)

Στη βάση \(\{\mathbf{z}; \mathbf{1}\}, \mathbf{z}; \mathbf{j}\} \), ο προηγουμένος τελεστής αναπαρίσταται από τον πίνακα

\[
\mathbf{S}_n = \frac{1}{5} \left(3 \mathbf{S}_x + 4 \mathbf{S}_z \right) = \frac{1}{5} \left(\frac{3}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + 4 \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \right) = \frac{\hbar}{10} \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}
\]

Δηλαδή

\[
\mathbf{S}_n = \frac{\hbar}{10} \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}
\] (2)

Παρατηρήστε ότι ο πίνακας (2) είναι ερμιτιανός, όπως πρέπει, αφού αναπαριστά τον ερμιτιανό τελεστή \(\hat{\mathbf{S}}_n \).

Τα πιθανά αποτελέσματα της 2\(^{η}\) μέτρησης είναι οι ιδιοτιμές του αντίστοιχου τελεστή, \(\hat{\mathbf{S}}_n \), που ξέρουμε ότι είναι \(\pm \frac{\hbar}{2} \), αλλά ας το επιβεβαιώσουμε για να κάνουμε έναν έλεγχο των πράξεων μας.

Οι ιδιοτιμές του τελεστή \(\hat{\mathbf{S}}_n \) ταυτίζονται με τις ιδιοτιμές του πίνακα (2).

Το χαρακτηριστικό πολυώνυμο του πίνακα (2) είναι
\[
\text{det}(S_n - \lambda I) = \begin{vmatrix}
\frac{4h}{10} - \lambda & \frac{3h}{10} \\
\frac{3h}{10} & \frac{4h}{10} - \lambda
\end{vmatrix} = \left(\frac{4h}{10} - \lambda\right)
\left(-\frac{4h}{10} - \lambda\right) - \left(\frac{3h}{10}\right)^2 = \\
= -\left(\frac{4h}{10}\right)^2 + \lambda^2 - \left(\frac{3h}{10}\right)^2 = \lambda^2 - \left(\frac{h}{2}\right)^2
\]

Οι ιδιοτιμές του πίνακα \(S_n \) είναι οι ρίζες του χαρακτηριστικού πολυώνυμου του, δηλαδή

\[\lambda_{1,2} = \pm \frac{h}{2} \]

Θα βρούμε τώρα τα ιδιοδιανύσματα του πίνακα \(S_n \), τα οποία αναπαριστούν, στη βάση \(\{|z;\uparrow\rangle,|z;\downarrow\rangle\} \), τις αντίστοιχες ιδιοκαταστάσεις του τελεστή \(S_n \).

Για \(\lambda_1 = \frac{h}{2} \), η εξίσωση ιδιοτιμών του πίνακα \(S_n \) γράφεται

\[
S_n \begin{pmatrix} x \\ y \end{pmatrix} = \frac{h}{2} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{h}{2} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \\
\begin{pmatrix} x \rangle \begin{pmatrix} 4 \\ 3 \end{pmatrix} \rangle = 5 \begin{pmatrix} x \rangle \begin{pmatrix} 3 \\ -4 \end{pmatrix} \rangle = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} x \rangle \begin{pmatrix} 3 \\ -9 \end{pmatrix} \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -x + 3y \rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Επομένως

\[-x + 3y = 0 \]
\[3x - 9y = 0\]

Αν πολλαπλασιάσουμε την 1\(^{η}\) εξίσωση με \(-3\), παίρνουμε τη 2\(^{η}\), δηλαδή οι εξισώσεις είναι γραμμικά εξαρτημένες, όπως πρέπει για να υπάρχει μη τετριμμένο ιδιοδιάνυσμα.

Από την 1\(^{η}\) εξίσωση παίρνουμε

\[x = 3y\]

Επομένως, το μη κανονικοποιημένο ιδιοδιάνυσμα είναι το \(\begin{pmatrix} 3y \\ y \end{pmatrix} \), από το οποίο με κανονικοποίηση παίρνουμε

\[1 = \left| y \right|^2 (9 + 1) = 10 \Rightarrow \left| y \right| = \frac{1}{\sqrt{10}} \]
Με δεδομένη τη συμμετρία φάσης των κβαντικών καταστάσεων, μπορούμε να παραλείψουμε τη σταθερή φάση του μιγαδικού συντελεστή γ, και τότε το κανονικοποιημένο ιδιοδιάνυσμα ιδιοτιμής $\frac{h}{2}$ του πίνακα S_n είναι το $\frac{1}{\sqrt{10}} \left(\begin{array}{c} 3 \\ 1 \end{array} \right)$.

Το άλλο ιδιοδιάνυσμα, με ιδιοτιμή $-\frac{h}{2}$, πρέπει να είναι κάθετο στο προηγούμενο, αφού ο πίνακας S_n είναι ερμιτιανός. Έτσι, το κανονικοποιημένο ιδιοδιάνυσμα ιδιοτιμής $-\frac{h}{2}$ του πίνακα S_n είναι το $\frac{1}{\sqrt{10}} \left(\begin{array}{c} 1 \\ -3 \end{array} \right)$.

Πράγματι

$S_n \frac{1}{\sqrt{10}} \left(\begin{array}{c} 4 \\ 3 \\ -3 \end{array} \right) = \frac{h}{10} \left(\begin{array}{c} 1 \\ 3 \\ -4 \end{array} \right) \frac{1}{\sqrt{10}} \left(\begin{array}{c} 1 \\ -3 \end{array} \right) = \frac{h}{10 \sqrt{10}} \left(\begin{array}{c} -5 \\ 15 \end{array} \right) = \frac{5h}{10 \sqrt{10}} \left(\begin{array}{c} -1 \\ 1 \end{array} \right) = \frac{h}{2 \sqrt{10}} \left(\begin{array}{c} -1 \\ 1 \end{array} \right)$

$S_n \frac{1}{\sqrt{10}} \left(\begin{array}{c} 3 \\ 1 \end{array} \right) = \frac{1}{10} \left(\begin{array}{c} 1 \\ -3 \end{array} \right) \frac{1}{\sqrt{10}} \left(\begin{array}{c} 1 \\ -3 \end{array} \right) = \frac{1}{10} \left(1 + 9 \right) = 1$

Έχοντας υπολογίσει τα ιδιοδιανύσματα του πίνακα S_n και τον σπίνορα που αναπαριστά την κατάσταση του σπιν πριν τη 2^1 μέτρηση, μπορούμε να υπολογίσουμε τις ζητούμενες πιθανότητες.

Το πλάτος της πιθανότητας η 2^1 μέτρηση να δώσει αποτέλεσμα $\frac{h}{2}$ είναι

$\left(\frac{1}{\sqrt{10}} \left(\begin{array}{c} 3 \\ 1 \end{array} \right) \right)^\dagger \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \frac{1}{\sqrt{20}} \left(\begin{array}{c} 3 \\ 1 \end{array} \right) \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \frac{1}{2 \sqrt{5}} (3 -1) = \frac{1}{\sqrt{5}}$

Η πιθανότητα είναι, επομένως,

$\left\| \frac{1}{\sqrt{5}} \right\|^2 = \frac{1}{5}$ ή 20%

Το πλάτος της πιθανότητας η 2^2 μέτρηση να δώσει αποτέλεσμα $-\frac{h}{2}$ είναι

$\left(\frac{1}{\sqrt{10}} \left(\begin{array}{c} 1 \\ -3 \end{array} \right) \right)^\dagger \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \frac{1}{\sqrt{20}} \left(\begin{array}{c} 1 \\ -3 \end{array} \right) \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \frac{1}{2 \sqrt{5}} (1 + 3) = \frac{2}{\sqrt{5}}$

Η πιθανότητα είναι, επομένως,

$\left\| \frac{2}{\sqrt{5}} \right\|^2 = \frac{4}{5}$ ή 80%

Παρατηρήστε ότι το άθροισμα των δύο πιθανοτήτων είναι 1, όπως πρέπει.

Σπύρος Κωνσταντογιάννης
Φυσικός, M.Sc.

skonstan@hotmail.com